Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate May 2019

Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate

Biomedical Engineering

The objective is to produce an electrophysiological model of an adult human left atrium. This model will be used to test mapping probe catheters used for locating cardiac arrhythmias against current technology used in practice. Dr. Chris Porterfield requested this model and other physicians or probe catheter manufacturers may also use this product in the future. Dr. Porterfield also discussed the possibility of future senior project groups using the model as a bench test for designing new catheter tips. The model will precisely simulate electrical behaviors of the heart in normal as well as arrhythmic conditions. Ideally, the model will …


Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow Jun 2015

Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow

Biomedical Engineering

The purpose of this project was to create a unique SCBA (self-contained breathing apparatus) for a firefighter named Chris Gauer. This prototype consists of a SCBA headgear connected to a polycarbonate-formed stoma mask with a medical-grade sanitary silicone hose.


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson Jun 2013

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when they …