Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah Jan 2021

Development Of Novel Polymeric Materials For Their Application In Monitoring And Remediation Of Environmental Pollutants, Rishabh Shah

Theses and Dissertations--Chemical and Materials Engineering

Remediation of environmental pollutants from water is one of the major challenges in the 21st century. Utilizing novel polymeric materials to accomplish this challenge has garnered a lot of interest in recent times. Flexibility in synthesizing as well as functionalizing makes them attractive for their application in pollutant remediation. This work is based on development and characterization of novel crosslinked polymeric as well as linear polymeric materials from biphenyl-based monomers, biphenyl based crosslinker and a temperature responsive monomer (Nisopropylacrylamide (NIPAAm)) for their application in remediation of toxic pollutants such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and iron oxide nanoparticle …


Effects Of Micro-Features On Cell Detachment From Poly(N-Isopropylacrylamide) Coated Polydimethylsiloxane Membranes, Luke Webel Jan 2019

Effects Of Micro-Features On Cell Detachment From Poly(N-Isopropylacrylamide) Coated Polydimethylsiloxane Membranes, Luke Webel

Williams Honors College, Honors Research Projects

The tested hypothesis was that features on polydimethylsiloxane (PDMS) surfaces coated with a poly(N-isopropylacrylamide)/aminopropyltriethoxysilane or pNIPAAM/APTES thin film would accelerate cell detachment than the film coated on a unfeatured surface. This project tested samples with features generated by molds, wrinkling, and sandpaper roughened substrates. Surface feature generation methods were limited to mechanical means, and characterized by microscopy and strain rates. 50/50 mixtures of 1.5 wt.% pNIPAAM/ APTES were used to coat thin films (30-40 nm) on PDMS membranes by spin-coating, and the coated membranes were thermally annealed to chemically graft pNIPAAm/APTES on the membrane and their thermo-responsive property was assessed …