Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Semiconductors

2015

University at Albany, State University of New York

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Optical Metrology For Directed Self-Assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry, Dhairya J. Dixit Jan 2015

Optical Metrology For Directed Self-Assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry, Dhairya J. Dixit

Legacy Theses & Dissertations (2009 - 2024)

The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization.


An Assessment Of Critical Dimension Small Angle X-Ray Scattering Metrology For Advanced Semiconductor Manufacturing, Charles Michael Settens Jan 2015

An Assessment Of Critical Dimension Small Angle X-Ray Scattering Metrology For Advanced Semiconductor Manufacturing, Charles Michael Settens

Legacy Theses & Dissertations (2009 - 2024)

Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty.