Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Plasma Medicine, Mounir Laroussi, Alexander Fridman Jan 2008

Plasma Medicine, Mounir Laroussi, Alexander Fridman

Electrical & Computer Engineering Faculty Publications

Recent demonstrations of plasma technology in the treatment of living cells, tissues, and organs are creating a newfield at the intersection of plasma science and technology with biology and medicine - Plasma Medicine.


Nonthermal Laser-Induced Formation Of Crystalline Ge Quantum Dots On Si(100), M. S. Hegazy, H. E. Elsayed-Ali Jan 2008

Nonthermal Laser-Induced Formation Of Crystalline Ge Quantum Dots On Si(100), M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The effects of laser-induced electronic excitations on the self-assembly of Ge quantum dots on Si (100) - (2×1) grown by pulsed laser deposition are studied. Electronic excitations due to laser irradiation of the Si substrate and the Ge film during growth are shown to decrease the roughness of films grown at a substrate temperature of ∼120 °C. At this temperature, the grown films are nonepitaxial. Electronic excitation results in the formation of an epitaxial wetting layer and crystalline Ge quantum dots at ∼260 °C, a temperature at which no crystalline quantum dots form without excitation under the same deposition conditions. …


Electron Density And Temperature Measurement Of An Atmospheric Pressure Plasma By Millimeter Wave Interferometer, Xinpei Lu, Mounir Laroussi Jan 2008

Electron Density And Temperature Measurement Of An Atmospheric Pressure Plasma By Millimeter Wave Interferometer, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

In this paper, a 105 GHz millimeter wave interferometer system is used to measure the electron density and temperature of an atmospheric pressure helium plasma driven by submicrosecond pulses. The peak electron density and electron-neutral collision frequency reach 8 X 1012 cm-3 and 2.1 X 1012 s-1, respectively. According to the electron-helium collision cross section and the measured electron-neutral collision frequency, the electron temperature of the plasma is estimated to reach a peak value of about 8.7 eV.


Reproducible Increased Mg Incorporation And Large Hole Concentration In Gan Using Metal Modulated Epitaxy, Shawn D. Burnham, Gon Namkoong, David C. Look, Bruce Clafin, W. Alan Doolittle Jan 2008

Reproducible Increased Mg Incorporation And Large Hole Concentration In Gan Using Metal Modulated Epitaxy, Shawn D. Burnham, Gon Namkoong, David C. Look, Bruce Clafin, W. Alan Doolittle

Electrical & Computer Engineering Faculty Publications

The metal modulated epitaxy (MME) growth technique is reported as a reliable approach to obtain reproducible large hole concentrations in Mg-doped GaN grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates. An extremely Ga-rich flux was used, and modulated with the Mg source according to the MME growth technique. The shutter modulation approach of the MME technique allows optimal Mg surface coverage to build between MME cycles and Mg to incorporate at efficient levels in GaN films. The maximum sustained concentration of Mg obtained in GaN films using the MME technique was above 7 × 1020 cm-3 …


Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2008

Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The nucleation and growth of indium on a vicinal Si (100) - (2×1) surface at high temperature by femtosecond pulsed laser deposition was investigated by in situ reflection high energy electron diffraction (RHEED). RHEED intensity relaxation was observed for the first ∼2 ML during the growth of In (4×3) by step flow. From the temperature dependence of the rate of relaxation, an activation energy of 1.4±0.2 eV of surface diffusion was determined. The results indicate that indium small clusters diffused to terrace step edges with a diffusion frequency constant of (1.0±0.1) × 1011 s-1. The RHEED specular …