Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Dissertations

Theses/Dissertations

Topological insulators

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian May 2021

Investigation Of Topological Phonons In Discrete Mechanical Metamaterials, Kai Qian

Dissertations

The study of topological mechanical metamaterials is a new emerging field that focuses on the topological properties of artificial mechanical structures. Inspired by topological insulators, topological mechanism has attracted intensive attention in condensed matter physics and successfully connected the quantum mechanical descriptions of electrons with the classical descriptions of phonons. It has led to experiments of mechanical metamaterials possessing topological characteristics, such as topologically protected conducting edges or surfaces without back-scattering. This dissertation presents a new experimental approach for mechanically engineering topological metamaterials based on patterning magnetically coupled spinners in order to localize the propagation of vibrations and evaluate different …