Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

University of Arkansas, Fayetteville

Graduate Theses and Dissertations

GaN

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Characterization Of Hydride Vapor Phase Epitaxy Grown Gan Substrates For Future Iii-Nitride Growth, Alaa Ahmad Kawagy May 2019

Characterization Of Hydride Vapor Phase Epitaxy Grown Gan Substrates For Future Iii-Nitride Growth, Alaa Ahmad Kawagy

Graduate Theses and Dissertations

The aim of this research is to investigate and characterize the quality of commercially obtained gallium nitride (GaN) on sapphire substrates that have been grown using hydride vapor phase epitaxy (HVPE). GaN substrates are the best choice for optoelectronic applications because of their physical and electrical properties. Even though HVPE GaN substrates are available at low-cost and create the opportunities for growth and production, these substrates suffer from large macro-scale defects on the surface of the substrate.

In this research, four GaN on sapphire substrates were investigated in order to characterize the surface defects and, subsequently, understand their influence on …


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …