Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

The Challenge For Vision Of Fluctuating Real-World Illumination, David H. Foster May 2019

The Challenge For Vision Of Fluctuating Real-World Illumination, David H. Foster

MODVIS Workshop

No abstract provided.


Exploring Laser Induced Breakdown Spectroscopy (Libs) For Post-Detonation Nuclear Forensics Debris Analysis, Justin Knoll, Chad Schools, David Fobar Mar 2019

Exploring Laser Induced Breakdown Spectroscopy (Libs) For Post-Detonation Nuclear Forensics Debris Analysis, Justin Knoll, Chad Schools, David Fobar

Purdue Workshop on Nonproliferation: Technology and Approaches

In the unlikely but catastrophic event of a nuclear terrorist attack our government leadership will need reliable information to rapidly inform critical decisions. This research explores the use of Laser Induced Breakdown Spectroscopy (LIBS) as a potential analysis tool in the National Technical Nuclear Forensics process. The current state of post detonation nuclear forensics requires ground and air samples be collected and shipped to state-of-the-art laboratories for radiochemical analysis. The samples undergo many measurements and useable data is produced as these measurements are completed. This data flows back into the process to guide additional measurements and inform the process of …


Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner Aug 2018

Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advancements in microelectromechanical systems (MEMS) and microplasmas, particularly with respect to applications in combustion and biotechnology, motivate studies into microscale gas breakdown to enable safe system design and implementation. Breakdown at microscale deviates from that predicted by Paschen’s law due to field emission—the stripping of electrons from the cathode in the presence of strong surface field—and follows the Fowler-Nordheim (FN) law. As injected current increases at this length scale, electrons accumulate in the gap and FN electron emission becomes space charge limited, leading to the Child-Langmuir (CL) law at vacuum and the Mott-Gurney (MG) law at high pressure. While theoretical …


Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung Aug 2018

Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung

The Summer Undergraduate Research Fellowship (SURF) Symposium

A new generation of silicon pixel detectors is required to cope with the unprecedented luminosities at the high-luminosity phase of the Large Hadron Collider (HL-LHC) in 2025. The HL-LHC provides a high radiation, high interaction rate environment for the innermost detector region of the CMS detector. This can lead to an uncontrolled increase in temperature of the detector that can destroy the silicon pixels. Moreover, too high operating temperature can add noise to the data obtained from the detector and can slow the read out cheap down. Therefore, the Phase II upgrade to the Compact Muon Solenoid (CMS) experiment requires …


Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher Aug 2017

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2-dimensional element of high practical importance. Despite its exceptional properties, graphene’s real applications in industrial or commercial products have been limited. There are many methods to produce graphene, but none has been successful in commercializing its production. Roll-to-roll plasma chemical vapor deposition (CVD) is used to manufacture graphene at large scale. In this research, we present a Bayesian linear regression model to predict the roll-to-roll plasma system’s electrode voltage and current; given a particular set of inputs. The inputs of the plasma system are power, pressure and concentration of gases; hydrogen, methane, oxygen, nitrogen and argon. This …


Thermodynamic Calculation Of The Liquidus Surface Projection Of Multi-Component Aluminum Alloys, Jingrui Zhao, Yong Du, Lijun Zhang, Jixue Zhou, Yuansheng Yang Oct 2016

Thermodynamic Calculation Of The Liquidus Surface Projection Of Multi-Component Aluminum Alloys, Jingrui Zhao, Yong Du, Lijun Zhang, Jixue Zhou, Yuansheng Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


An Antireflective Tco Film For Czts Solar Cells, Feng Zhan Oct 2016

An Antireflective Tco Film For Czts Solar Cells, Feng Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao Oct 2016

Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth space volumes …


Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein Aug 2015

Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Plasma facing components (PFCs) in fusion devices must be able to withstand high temperatures and erosion due to incident energetic ion radiations. Tungsten has become the material of choice for PFCs due to its high strength, thermal conductivity, and low erosion rate. However, its surface deteriorates significantly under helium ion irradiation in fusion-like conditions and forms nanoscopic fiber-like structures, or fuzz. Fuzz is brittle in nature and has relatively lower thermal conductivity than that of the bulk material. Small amounts of fuzz may lead to excessive contamination of the plasma, preventing the fusion reaction from taking place. Despite recent efforts, …


Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner Aug 2015

Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a growing need for economical, effective, and safe methods of sterilizing fresh produce. The most common method is a chlorine wash, which is expensive and may introduce carcinogens. High voltage cold atmospheric pressure plasmas are a promising solution that has demonstrated a germicidal effect; however, the responsible chemical mechanisms and reaction pathways are not fully understood. To elucidate this chemistry, we used optical emission spectroscopy to measure the species produced in the plasma generated by a 60 Hz pulsed dielectric barrier discharge in a plastic box containing various fill gases (He, N2, CO2, dry …


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the …


Dsmc Simulation Of Microstructure Actuation By Knudsen Thermal Force, Aaron Pikus, Israel Sebastiao, Andrew Strongrich, Alina Alexeenko Aug 2015

Dsmc Simulation Of Microstructure Actuation By Knudsen Thermal Force, Aaron Pikus, Israel Sebastiao, Andrew Strongrich, Alina Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

In many industrial and research applications there is a need for vacuum sensors with higher accuracy and spatial resolution than what is currently available. Examples of target applications include high-altitude platforms, satellites and in-vacuum manufacturing processes such as freeze-drying of food and pharmaceuticals. In this connection, a novel pressure sensor, named Microelectromechanical In-plane Knudsen Radiometric Actuator (MIKRA), has been developed by at Purdue University. MIKRA is based on Knudsen thermal forces generated by rarefied flow driven by thermal gradients within the microstructure Thus, the goal of this work is to model the rarefied gas flow in the MIKRA sensor under …


Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen Aug 2015

Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum simulation using ultra-cold atoms, such as Bose-Einstein Condensates (BECs), offers a very flexible and well controlled environment to simulate physics in different systems. For example, to simulate the effects of spin orbit coupling (SOC) on electrons in solid state systems, we can make a SOC BEC which mimics the behavior of SOC electrons. The goal of this project is to see how the superfluid property of BECs change in the presence of SOC. In particular, we plan to measure the critical velocity of an 87Rb BEC with and without SOC by stirring it with a laser. This laser needs …


Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein Aug 2014

Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy [LIBS] is a commonly used technique for multi-element analyses for various applications such as space exploration, nuclear forensics, environmental analysis, process monitoring. The advantages of the LIBS technique include robustness, ease of use, field portability, and real-time, non-invasive multi-element analyses. However, in comparison to other lab based analytical techniques, it suffers from low precision and low sensitivity. In order to overcome these drawbacks, various approaches have been used, including double-pulse LIBS [DPLIBS]. Typically, various wavelength combinations of two Nd: yttrium aluminum garnet [YAG] lasers have been used for DPLIBS. However, the use of long wavelength (CO2 …


Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D. Aug 2014

Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy (LIBS) is a portable, remote, non-invasive analytical technique which effectively distinguishes neutral and ionic species for a range of low- to high-Z elements in a multi-element target. Subsequently, LIBS holds potential in special nuclear material (SNM) sensing and nuclear forensics requiring minimal sample preparation and detecting isotopic shifts which allows for differentiation in SNM (namely U) enrichment levels. Feasible applications include not only nonproliferation and homeland security but also nuclear fuel prospecting and industrial safeguard endorsement. Elements of higher mass with complex atomic structures, such as U, however, result in crowded emission spectra with LIBS, and characteristic …


Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan Aug 2014

Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Density Functional Theory (DFT) simulations allow for sophisticated modeling of chemical interactions, but the extreme computational cost makes it inviable for large scale applications. Molecular dynamics models, specifically ReaxFF, can model much larger simulations with greater speed, but with lesser accuracy. The accuracy of ReaxFF can be improved by comparing predictions of both methods and tuning ReaxFF’s parameters. Molecular capabilities of ReaxFF were gauged by simulating copper complexes in water over a 200 ps range, and comparing energy predictions against ReaxFF. To gauge solid state capabilities, volumetric strain was applied to simulated copper bulk and the strain response functions used …


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …