Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Engineering

Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli Dec 2022

Characterization Of Losses In Superconducting Radio-Frequency Cavities By Combined Temperature And Magnetic Field Mapping, Ishwari Prasad Parajuli

Physics Theses & Dissertations

Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010-1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two novel …


Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji Dec 2022

Numerical Simulation Of Electroosmotic Flow Of Viscoelastic Fluid In Microchannel, Jianyu Ji

Mechanical & Aerospace Engineering Theses & Dissertations

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which often involve the use of viscoelastic non-Newtonian fluids. Due to the existence of the elastic effect, the viscoelastic EOF develops into chaotic flow under extremely low Reynolds numbers, which is known as elastic turbulence. The mechanism of elastic turbulence in electroosmotic flow remains unclear. Numerical simulation plays an important role in understanding the mechanisms of elastic turbulence. This dissertation is aimed to study the EOF of viscoelastic fluids in constriction microchannels under various direct current (DC) and alternating current (AC) electric fields. First, the EOF …


Multi-Technique Characterization Of Superconducting Materials For Particle Accelerator Applications, Junki Makita Aug 2022

Multi-Technique Characterization Of Superconducting Materials For Particle Accelerator Applications, Junki Makita

Physics Theses & Dissertations

We investigated the performance limitations of superconducting radio-frequency (SRF) cavities and materials using multiple experimental techniques. In particular, this study focuses on understanding the surface properties of nitrogen-doped Nb cavities and superconducting thin films with higher Tc such as Nb3Sn. The main goal of this work is to use different techniques to better understand each aspect of the complex loss mechanism in superconductors to further improve the already highly efficient SRF cavities.

Nitrogen doping applied to a Nb SRF cavity significantly improves the quality factor Q0 compared to a conventional Nb cavity, at an expense of …


A Comparison Of Uniaxial Compressive Response And Inelastic Deformation Mechanisms In Freeze Cast Alumina-Epoxy Composites Without And With Rigid Confinement, Tareq Aljuhari Aug 2022

A Comparison Of Uniaxial Compressive Response And Inelastic Deformation Mechanisms In Freeze Cast Alumina-Epoxy Composites Without And With Rigid Confinement, Tareq Aljuhari

Mechanical & Aerospace Engineering Theses & Dissertations

Cellular ceramics have an array of improved mechanical properties that make them incredibly desired for different applications such as armor systems, aircraft structures, automobiles bumpers, and biomedical implants. It is also desirable that porous architecture could be shaped into bulk complicated shapes and easy to scale-up with low manufacturing cost. Despite several efficient techniques to fabricate cellular ceramics, some limitations are preventing us from meeting the high demand of the after mentioned applications. For that, freeze casting, also called ice-templating, is technique of solidifying an aqueous ceramic suspension under the effect of unidirectional temperature gradient. In this study, Ice-templated porous …


Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore Aug 2022

Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore

Electrical & Computer Engineering Theses & Dissertations

Spin polarized photocathodes are necessary to examine parity violations and other fundamental phenomena in the field of high energy physics. To create these devices, expensive and complicated growth processes are necessary. While integral to accelerator physics, spin polarized electrons could have other exciting applications in materials science and other fields of physics. In order to explore these other applications feasibly, the relative supply of spin polarized photocathodes with a high rate of both polarization and photoemission needs to be increased. One such way to increase this supply is to develop the means to grow them faster and at a larger …


Design And Commissioning Of An E-Beam Irradiation Beamline At The Upgraded Injector Test Facility At Jefferson Lab, Xi Li, Helmut Baumgart, Charles Bott, Gianluigi Ciovati, Shaun Gregory, Fay Hannon, Mike Mccaughan, Robert Pearce, Matthew Poelker, Hannes Vennekate, Shaoheng Wang Jun 2022

Design And Commissioning Of An E-Beam Irradiation Beamline At The Upgraded Injector Test Facility At Jefferson Lab, Xi Li, Helmut Baumgart, Charles Bott, Gianluigi Ciovati, Shaun Gregory, Fay Hannon, Mike Mccaughan, Robert Pearce, Matthew Poelker, Hannes Vennekate, Shaoheng Wang

Electrical & Computer Engineering Faculty Publications

The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a continuous-wave superconducting linear accelerator capable of providing an electron beam with energy up to 10 MeV. A beamline for electron-beam irradiation has been designed, installed and successfully commissioned at this facility, aimed at the degradation study of 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) in wastewater treatment. A solenoid with a peak axial magnetic field of up to 0.28 T and a set of raster coils were used to obtain a Gaussian beam profile with a transverse standard deviation of ∼15.0 mm at the target location. Monte-Carlo simulations using …


Development Of High Conductivity Copper Coatings For Srf Cavity, Himal Pokhrel May 2022

Development Of High Conductivity Copper Coatings For Srf Cavity, Himal Pokhrel

Physics Theses & Dissertations

The development of metallic coatings with high purity and high thermal conductivity at cryogenic temperature could be very important for application to the superconducting radiofrequency (SRF) cavity technology. The deposition of such bulk coatings on the outer surface of a niobium cavity could result in higher heat conductance and mechanical stiffness, both of which are crucial for enhancing the cavity performance at a reduced cost.

Cold spray technology was used to deposit bulk coatings of pure copper and copper-tungsten alloys on the niobium substrate and the samples of size 2 mm × 2 mm cross section were cut and subjected …


Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi May 2022

Foundations Of Plasmas For Medical Applications, T. Von Woedtke, Mounir Laroussi, M. Gherardi

Electrical & Computer Engineering Faculty Publications

Plasma medicine refers to the application of nonequilibrium plasmas at approximately body temperature, for therapeutic purposes. Nonequilibrium plasmas are weakly ionized gases which contain charged and neutral species and electric fields, and emit radiation, particularly in the visible and ultraviolet range. Medically-relevant cold atmospheric pressure plasma (CAP) sources and devices are usually dielectric barrier discharges and nonequilibrium atmospheric pressure plasma jets. Plasma diagnostic methods and modelling approaches are used to characterize the densities and fluxes of active plasma species and their interaction with surrounding matter. In addition to the direct application of plasma onto living tissue, the treatment of liquids …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark Jan 2022

On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current …


A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath Jan 2022

A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at −26.1 and −50 C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions …


The Hitran2020 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.M. Hartmann, V.- M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H.S.P. Müller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S. N. Yurchenko Jan 2022

The Hitran2020 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.M. Hartmann, V.- M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H.S.P. Müller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S. N. Yurchenko

Chemistry & Biochemistry Faculty Publications

The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. …


Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich Jan 2022

Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich

Physics Faculty Publications

We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain …


Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu Jan 2022

Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu

Mathematics & Statistics Faculty Publications

Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and Q-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the Q-tensor theory in dynamic configurations.


The Aquatic Particle Number Quandry, Alexander B. Bochdansky, Huanqing Huang, Maureen H. Conte Jan 2022

The Aquatic Particle Number Quandry, Alexander B. Bochdansky, Huanqing Huang, Maureen H. Conte

OES Faculty Publications

Optical surveys of aquatic particles and their particle size spectra have become important tools in studies of light propagation in water, classification of water masses, and the dynamics of trophic interactions affecting particle aggregation and flux. Here, we demonstrate that typical settings used in image analysis vastly underestimate particle numbers due to the particle – gel continuum. Applying a wide range of threshold values to change the sensitivity of our detection system, we show that macrogels cannot be separated from more dense particles, and that a true particle number per volume cannot be ascertained; only relative numbers in relation to …


Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano Jan 2022

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano

Physics Faculty Publications

The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …


Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification At Jefferson Laboratory, Lasitha Vidyaratne, Adam Carpenter, Tom Powers, Chris Tennant, Khan M. Iftekharuddin, Md. Monibor Rahman, Anna S. Shabalina Jan 2022

Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification At Jefferson Laboratory, Lasitha Vidyaratne, Adam Carpenter, Tom Powers, Chris Tennant, Khan M. Iftekharuddin, Md. Monibor Rahman, Anna S. Shabalina

Electrical & Computer Engineering Faculty Publications

This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of …


Beamline For E-Beam Processing At Uitf, G. Ciovati, C. Bott, S. Gregory, F. Hannon, Xi Li, M. Mccaughan, R. Pearce, M. Poelker, H. Vennekate Jan 2022

Beamline For E-Beam Processing At Uitf, G. Ciovati, C. Bott, S. Gregory, F. Hannon, Xi Li, M. Mccaughan, R. Pearce, M. Poelker, H. Vennekate

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Grand Challenges In Low Temperature Plasmas, Xinpei Lu, Peter J. Bruggeman, Stephan Reuter, George Naidis, Annemie Bogaerts, Mounir Laroussi, Michael Keidar, Eric Robert, Jean-Michel Pouvesle, Dawei Liu, Kostya (Ken) Ostrikov Jan 2022

Grand Challenges In Low Temperature Plasmas, Xinpei Lu, Peter J. Bruggeman, Stephan Reuter, George Naidis, Annemie Bogaerts, Mounir Laroussi, Michael Keidar, Eric Robert, Jean-Michel Pouvesle, Dawei Liu, Kostya (Ken) Ostrikov

Electrical & Computer Engineering Faculty Publications

Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. …


Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.) Jan 2022

Real-Time Cavity Fault Prediction In Cebaf Using Deep Learning, Md. M. Rahman, K. Iftekharuddin, A. Carptenter, T. Mcguckin, C. Tennant, L. Vidyaratne, Sandra Biedron (Ed.), Evgenya Simakov (Ed.), Stephen Milton (Ed.), Petr M. Anisimov (Ed.), Volker R.W. Schaa (Ed.)

Electrical & Computer Engineering Faculty Publications

Data-driven prediction of future faults is a major research area for many industrial applications. In this work, we present a new procedure of real-time fault prediction for superconducting radio-frequency (SRF) cavities at the Continuous Electron Beam Accelerator Facility (CEBAF) using deep learning. CEBAF has been afflicted by frequent downtime caused by SRF cavity faults. We perform fault prediction using pre-fault RF signals from C100-type cryomodules. Using the pre-fault signal information, the new algorithm predicts the type of cavity fault before the actual onset. The early prediction may enable potential mitigation strategies to prevent the fault. In our work, we apply …


Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano Jan 2022

Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Nb₃Sn is of interest as a coating for SRF cavities due to its higher transition temperature Tc ~18.3 K and superheating field Hsh ~400 mT, both are twice that of Nb. Nb₃Sn coated cavities can achieve high-quality factors at 4 K and can replace the bulk Nb cavities operated at 2 K. A cylindrical magnetron sputtering system was built, commissioned, and used to deposit Nb₃Sn on the inner surface of a 2.6 GHz single-cell Nb cavity. With two identical cylindrical magnetrons, this system can coat a cavity with high symmetry and uniform thickness. Using Nb-Sn multilayer sequential sputtering followed by …