Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel Jan 2019

Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel

Dissertations and Theses

Foams, a two-phase dispersion, are staples of the cosmetic, personal care, petroleum, pharmaceutical, and other industries. Central to these applications is the stability of the dispersion against separation. Foams break down by two mechanisms: the first is bubble coalescence, which is driven by the gravity drainage of the continuous phase. The drainage acts to push the bubbles against each other, and leads to the formation of thin lamellae, which break and cause the coalescence. The second is the mass transfer of the dispersed phase through the continuous phase, which is caused by the difference in pressures between the bubbles and …