Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Energy

Gordon Wallace

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Mar 2014

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Gordon Wallace

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.


Novel Nanographene/Porphyrin Hybrids-Preparation, Characterization, And Application In Solar Energy Conversion Schemes, Daniel Kiessling, Ruben D. Costa, Georgios Katsukis, Jenny Malig, Fabian Lodermeyer, Sebastian Feihl, Alexandra Roth, Leonie Wibmer, Matthias Kehrer, Michel Volland, Pawel W. Wagner, Gordon G. Wallace, David L. Officer, Dirk M. Guldi Mar 2014

Novel Nanographene/Porphyrin Hybrids-Preparation, Characterization, And Application In Solar Energy Conversion Schemes, Daniel Kiessling, Ruben D. Costa, Georgios Katsukis, Jenny Malig, Fabian Lodermeyer, Sebastian Feihl, Alexandra Roth, Leonie Wibmer, Matthias Kehrer, Michel Volland, Pawel W. Wagner, Gordon G. Wallace, David L. Officer, Dirk M. Guldi

Gordon Wallace

Four novel nanographene/porphyrin hybrids were prepared, characterized, and probed in solar energy conversion schemes. Exfoliation of graphite by means of immobilizing four different porphyrins onto the basal plane of graphene is accompanied by distinct electronic interactions in both the ground and the excited states. In the ground state, a strong loss in oscillator strength goes hand-in-hand with a notable broadening of the porphyrin transitions and, as such, attests to the shift of electron density from the electron donating porphyrins to nanographene. In the excited state, a nearly quantitative quenching of the porphyrin fluorescence is indicative of full charge transfer. The …