Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie Nov 2018

Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie

Master of Science in Computer Science Theses

The evolution of machine learning and computer vision in technology has driven a lot of

improvements and innovation into several domains. We see it being applied for credit decisions, insurance quotes, malware detection, fraud detection, email composition, and any other area having enough information to allow the machine to learn patterns. Over the years the number of sensors, cameras, and cognitive pieces of equipment placed in the wilderness has been growing exponentially. However, the resources (human) to leverage these data into something meaningful are not improving at the same rate. For instance, a team of scientist volunteers took 8.4 years, …


Integration Of Robotic Perception, Action, And Memory, Li Yang Ku Oct 2018

Integration Of Robotic Perception, Action, And Memory, Li Yang Ku

Doctoral Dissertations

In the book "On Intelligence", Hawkins states that intelligence should be measured by the capacity to memorize and predict patterns. I further suggest that the ability to predict action consequences based on perception and memory is essential for robots to demonstrate intelligent behaviors in unstructured environments. However, traditional approaches generally represent action and perception separately---as computer vision modules that recognize objects and as planners that execute actions based on labels and poses. I propose here a more integrated approach where action and perception are combined in a memory model, in which a sequence of actions can be planned based on …


Investigating Dataset Distinctiveness, Andrew Ulmer, Kent W. Gauen, Yung-Hsiang Lu, Zohar R. Kapach, Daniel P. Merrick Aug 2018

Investigating Dataset Distinctiveness, Andrew Ulmer, Kent W. Gauen, Yung-Hsiang Lu, Zohar R. Kapach, Daniel P. Merrick

The Summer Undergraduate Research Fellowship (SURF) Symposium

Just as a human might struggle to interpret another human’s handwriting, a computer vision program might fail when asked to perform one task in two different domains. To be more specific, visualize a self-driving car as a human driver who had only ever driven on clear, sunny days, during daylight hours. This driver – the self-driving car – would inevitably face a significant challenge when asked to drive when it is violently raining or foggy during the night, putting the safety of its passengers in danger. An extensive understanding of the data we use to teach computer vision models – …


Hierarchical Bayesian Data Fusion Using Autoencoders, Yevgeniy Vladimirovich Reznichenko Jul 2018

Hierarchical Bayesian Data Fusion Using Autoencoders, Yevgeniy Vladimirovich Reznichenko

Master's Theses (2009 -)

In this thesis, a novel method for tracker fusion is proposed and evaluated for vision-based tracking. This work combines three distinct popular techniques into a recursive Bayesian estimation algorithm. First, semi supervised learning approaches are used to partition data and to train a deep neural network that is capable of capturing normal visual tracking operation and is able to detect anomalous data. We compare various methods by examining their respective receiver operating conditions (ROC) curves, which represent the trade off between specificity and sensitivity for various detection threshold levels. Next, we incorporate the trained neural networks into an existing data …


Stereo Vision: A Comparison Of Synthetic Imagery Vs. Real World Imagery For The Automated Aerial Refueling Problem, Nicholas J. Seydel Mar 2018

Stereo Vision: A Comparison Of Synthetic Imagery Vs. Real World Imagery For The Automated Aerial Refueling Problem, Nicholas J. Seydel

Theses and Dissertations

Missions using unmanned aerial vehicles have increased in the past decade. Currently, there is no way to refuel these aircraft. Accomplishing automated aerial refueling can be made possible using the stereo vision system on a tanker. Real world experiments for the automated aerial refueling problem are expensive and time consuming. Currently, simulations performed in a virtual world have shown promising results using computer vision. It is possible to use the virtual world as a substitute environment for the real world. This research compares the performance of stereo vision algorithms on synthetic and real world imagery.


Mitigating The Effects Of Boom Occlusion On Automated Aerial Refueling Through Shadow Volumes, Zachary C. Paulson Mar 2018

Mitigating The Effects Of Boom Occlusion On Automated Aerial Refueling Through Shadow Volumes, Zachary C. Paulson

Theses and Dissertations

In flight refueling of Unmanned Aerial Vehicles (UAVs) is critical to the United States Air Force (USAF). However, the large communication latency between a ground-based operator and his/her remote UAV makes docking with a refueling tanker unsafe. This latency may be mitigated by leveraging a tanker-centric stereo vision system. The vision system observes and computes an approaching receiver's relative position and orientation offering a low-latency, high frequency docking solution. Unfortunately, the boom -- an articulated refueling arm responsible for physically pumping fuel into the receiver -- occludes large portions of the receiver especially as the receiver approaches and docks with …


Fully Transparent Computer Vision Framework For Ship Detection And Tracking In Satellite Imagery, Jason T. Gottweis Jan 2018

Fully Transparent Computer Vision Framework For Ship Detection And Tracking In Satellite Imagery, Jason T. Gottweis

Browse all Theses and Dissertations

Tracking of ships in satellite imagery is a challenging problem in remote sensing since it requires both object detection and object recognition. Most of the resources available only cover one of these problems and are often filled with machine learning techniques which are costly to train. Additionally, the techniques covered in these resources are often difficult to replicate or may be hard to combine with other solutions to get a full tracking algorithm. The proposed framework offers a transparent and efficient alternative to machine learning approaches and includes preprocessing, detection, and recognition needed for tracking. All components of the framework …