Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

2017

Journal

Institution
Keyword
Publication

Articles 1 - 30 of 496

Full-Text Articles in Engineering

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin Dec 2017

Preparation Of Nis2 Nanosheet And Its Application In Asymmetric Supercapacitor, Yuan-You Wang, Ya-Nan Liu, Dang-Qin Jin

Journal of Electrochemistry

In this work, the NiS2 nanosheets have been synthesized using Ni(OH)2 as a precursor through a sacrificial template method. The microstructure and chemical composition of as-prepared NiS2 were characterized by XRD, EDS, BET, SEM and TEM techniques. The results showed that both Ni(OH)2 and NiS2 were composed of nanoplates. The electrochemical tests revealed that NiS2 exhibited the high specific capacitance of 1067.3 F•g-1 at a current density of 1 A•g-1 and excellent rate performance. Furthermore, in order to evaluate the practical application of NiS2, an asymmetric supercapacitor, NiS2 as …


Effect Of Fe2+/Fe3+Interconvertion On Reduction Behavior Of Fe3+ In Acidic Electrolytes, Jian-Xin Qin, Feng Lin, Wen-Ping Liu, Chao Chen, Meng-De Ren Dec 2017

Effect Of Fe2+/Fe3+Interconvertion On Reduction Behavior Of Fe3+ In Acidic Electrolytes, Jian-Xin Qin, Feng Lin, Wen-Ping Liu, Chao Chen, Meng-De Ren

Journal of Electrochemistry

The influences of ferrous/ferric (Fe2+/Fe3+) interconvertion on electrochemical reduction and electrode reaction of Fe3+ were investigated by using linear sweep voltammetry, potentiostatic method and cyclic voltammetry (CV) in acidic electrolytes containing chloride ion (Cl- ) and sulfate ion (SO42-). It was shown that the reduction process of Fe3+/Fe2+ would take place in two independent stages: (1) the reduction of Fe3+ to Fe2+ at E=0.35V and (2) the co-precipitation of Fe2+ by forming Fe(OH)2 (E≤-0.3 V) instead of Fe. The major effect of Fe2+ …


Effect Of Peg-Coating On Properties Of Lithium-Sulfur Battery Cathode Material Containing Carbon Fiber Conductive Agent, Jie-Cheng Tan, Yan-Hong Tian, Xue-Jun Zhang, Kai-Le Fan Dec 2017

Effect Of Peg-Coating On Properties Of Lithium-Sulfur Battery Cathode Material Containing Carbon Fiber Conductive Agent, Jie-Cheng Tan, Yan-Hong Tian, Xue-Jun Zhang, Kai-Le Fan

Journal of Electrochemistry

The composite materials contained high modulus carbon fiber (HMCF) were successfully prepared by employing a ball-milling process based on the coating treatment of polyethylene glycol (PEG), and their structures and morphologies were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques.The influences of PEG content on sulfur cathode capacity, cycle stability and rate performance were systematically studied. It was found that by the pre-coating of PEG, the cathode exhibited the high initial discharge specific capacity of 1312.5 mAh•g-1 at a current rate of 0.2C, and the reversible discharge capacity of 650 mAh•g …


Effects Of Jet Milling And Classifying Process On The Performance Of Lifepo4/C In Full Batteries, Xing-Liang Liu, Mao-Ping Yang, Wei-Wei Wang, Yong Cao Dec 2017

Effects Of Jet Milling And Classifying Process On The Performance Of Lifepo4/C In Full Batteries, Xing-Liang Liu, Mao-Ping Yang, Wei-Wei Wang, Yong Cao

Journal of Electrochemistry

The carbon coated lithium iron phosphate (LiFePO4/C) composite cathode material was prepared by using iron phosphate process. The effects of jet milling and classifying process on the electrochemical performance of LiFePO4/C cathode material in full batteries were investigted. Scanning electron microscopic analyses suggested that the globose secondary particles were crustily crushed during the jet milling and classifying process, which would further result in lower tap density and carbon content. The LiFeP4/C composite cathode materials with different physical characteristics were further tested in full batteries to evaluate the electrochemical properties. The results showed no obvious …


Cobalt-Based Nitrogen-Doped Carbon Non-Noble Metal Catalysts For Oxygen Reduction Reaction, Meng-Xiu Jiang, Jing Zhang, Yue-Hua Li, Rong Zhang Dec 2017

Cobalt-Based Nitrogen-Doped Carbon Non-Noble Metal Catalysts For Oxygen Reduction Reaction, Meng-Xiu Jiang, Jing Zhang, Yue-Hua Li, Rong Zhang

Journal of Electrochemistry

Transition metal-nitrogen co-doped carbon catalysts have attracted significant attention because of their reasonable activity and remarkable selectivity toward oxygen reduction reaction (ORR) as cathodic reaction in fuel cells. However, the role of transition metal in the active sites of the catalysts still is uncertain. In this work, the Cox-Ny/C-T catalysts were prepared with BP2000 as a carbon source, urea (Ur) as a nitrogen source and Co(OAc)2•4H2O as a metal precursor by a simple chemical method. Meanwhile, in order to optimize the ORR activity, the catalysts were synthesized with different amounts of Co …


Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang Dec 2017

Core-Shell Pd@Pt Ultrathin Nanowires As Durable Oxygen Reduction Electrocatalysts, Xin Wang, Yun-Jie Xiong, Liang-Liang Zou, Qing-Hong Huang, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

This paper describes a simple CO-assisted reduction approach for the controllable synthesis of ultrathin Pd nanowires along the one-dimensional (1D) direction. Ultrathin Pt films from one to several atomic layers were successfully decorated onto ultrathin Pd nanowires by utilizing Cu UPD deposition, and followed by in-situ redox replacement reaction of UPD Cu by Pt. The core–shell structure and composition of the Pd@Pt ultrathin nanowires have been verified using transmission electron microscopy and energy dispersive X-ray spectrometry. The core–shell Pd@Pt ultrathin nanowires exhibited comparative electrocatalytic activity and improved durability for the oxygen reduction reaction in comparison with commercial Pt black. The …


Effect Of Calcium On Atmospheric Corrosion Resistance Of Bridge Steel, Dong-Liang Li, Gui-Qin Fu, Miao-Yong Zhu Dec 2017

Effect Of Calcium On Atmospheric Corrosion Resistance Of Bridge Steel, Dong-Liang Li, Gui-Qin Fu, Miao-Yong Zhu

Journal of Electrochemistry

The corrosion behavior of bridge steel in simulated hot and humid industrial-marine atmosphere was investigated by mass loss analysis, XRD, SEM, electrochemical methods and a wet/dry alternate immersion corrosion test using 0.1 mol•L-1 NaCl+0.01 mol•L-1 NaHSO3 solutions. The corrosion depth (W) of experimental steels before and after calcium treatment versus time (t) curves showed a good agreement with the power function of W=Atn. The corrosion products were mainly composed of amorphous phase and a small amount of crystals including α-FeOOH, β-FeOOH, γ-FeOOH and Fe3O4. Trace calcium could promote the formation of …


Kinetics And Mechanism Toward Electrochemical Reductions Of Sodium Bromide And Methanol Over Iron Electrodes, Qun Liao, Shu-Feng Zhang, Wen-Hua Leng Dec 2017

Kinetics And Mechanism Toward Electrochemical Reductions Of Sodium Bromide And Methanol Over Iron Electrodes, Qun Liao, Shu-Feng Zhang, Wen-Hua Leng

Journal of Electrochemistry

It is of technological value and scientific interest to the electro-synthesis of ferrocene, conversion of carbon dioxide (CO2) and organic electro-synthesis in non-aqueous solutions by investigating the kinetics and mechanism toward electrochemical reductions of sodium bromide (NaBr) and methanol over iron electrodes. However, few reports in the related researches are available. In this article, the kinetics and mechanism toward electrochemical reductions of NaBr and methanol over iron electrodes were examined in detail by carrying out the polarization curve and electrochemical impedance spectroscopic measurements. The results showed that methanol was the reactant, while Na+ ions were functioned only …


Engineering The Electrochemical Capacitive Properties Of Activated Carbon By Correct Selection Of Ionic-Liquid Electrolytes, Qiu-Hong Zhang, Bao-Shou Shen, Song-Lin Zuo, Xin-Yu Wei Dec 2017

Engineering The Electrochemical Capacitive Properties Of Activated Carbon By Correct Selection Of Ionic-Liquid Electrolytes, Qiu-Hong Zhang, Bao-Shou Shen, Song-Lin Zuo, Xin-Yu Wei

Journal of Electrochemistry

In order to improve the electrochemical capacitive properties and to apply coconut shell activated carbon (AC) serving as electrode materials in ionic liquid (IL)-based supercapacitor (SC), the coconut shell AC material was re-activated using a steam as an activating agent in this work, forming a secondary AC (W-AC). The results showed that the specific capacitance of the W-AC electrode was much larger than that of the raw activated carbon electrode (R-AC) in 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4). The electrochemical techniques including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurement, and electrochemical impedance spectroscopy (EIS) were used to systematically study the capacitive …


Capacity Fading Analyses Of Lini 0.5Co 0.2Mn 0.3O2And Lini 0.5Co 0.2Mn 0.3O2/Lifepo4 Cathode Materials For Lithium-Ion Battery, Yi Hu, Xiang-Zhu He, Zhong-De Deng, Ling-Yong Kong, Wei-Li Shang Dec 2017

Capacity Fading Analyses Of Lini 0.5Co 0.2Mn 0.3O2And Lini 0.5Co 0.2Mn 0.3O2/Lifepo4 Cathode Materials For Lithium-Ion Battery, Yi Hu, Xiang-Zhu He, Zhong-De Deng, Ling-Yong Kong, Wei-Li Shang

Journal of Electrochemistry

The LiNi 0.5Co 0.2Mn 0.3O2/LiFePO4 (NMC532/LFP) composite cathode material for lithium-ion battery was prepared by wet ball-milling. The capacity fading behaviors of LiNi 0.5Co 0.2Mn 0.3O2 (NMC532) and LiNi 0.5Co 0.2Mn 0.3O2/LiFePO4 (NMC532/LFP) were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), charge/discharge and electrochemical impedance spectroscopy (EIS) tests. The results indicated that the capacity retention values of NMC532/LFP were 97.80% and 86.48%, respectively, after 50 cycles and 60℃ high temperature storage. The NMC532/LFP exhibited better cycle performance and high temperature storage performance. …


Applications Of N-Methyl-N-Butyl-Pyrrolidinium Bromide And N-Methyl-N-Ethyl-Pyrrolidinium Bromide In Zn-Br Flow Batteries, Zhang Qi, Miao-Miao Zhang, Meng Lin Dec 2017

Applications Of N-Methyl-N-Butyl-Pyrrolidinium Bromide And N-Methyl-N-Ethyl-Pyrrolidinium Bromide In Zn-Br Flow Batteries, Zhang Qi, Miao-Miao Zhang, Meng Lin

Journal of Electrochemistry

It is extremely important for battery performance and safety in Zn-Br flow battery to use quaternary ammonium salts as complex agents for bromine. In this work, the effects of electrolyte compositions and concentrations on the electrode reactions and battery performances were studied in the absence and presences of N-methyl-N-ethyl-pyrrolidinium bromide (MEP) or N-methyl-N-butyl-pyrrolidinium bromide (MBP). The conductivities in the electrolytes containing different constitutions and concentrations were measured by EIS method. The charge-discharge performance for the battery and the complex ability for bromine in different electrolytes were also investigated. The results showed that the electrolyte containing MBP was better than that …


Electroactivities Of Pd/Fe3O4-C Catalysts For Electro-Oxidation Of Methanol, Ethanol And Propanol, Tao Zou, Qing-Feng Yi, Yuan-Yuan Zhang, Xiao-Ping Liu, Guo-Rong Xu, Hui-Dong Nie, Xiu-Lin Zhou Dec 2017

Electroactivities Of Pd/Fe3O4-C Catalysts For Electro-Oxidation Of Methanol, Ethanol And Propanol, Tao Zou, Qing-Feng Yi, Yuan-Yuan Zhang, Xiao-Ping Liu, Guo-Rong Xu, Hui-Dong Nie, Xiu-Lin Zhou

Journal of Electrochemistry

Development of palladium (Pd) catalysts with high electroactivity for alcohol oxidation is significant for alcohol fuel cells. In this work, Pd nanoparticles were formed by sodium borohydride (NaBH4) reduction method and subsequently deposited on the surface of carbon supported ferriferrous oxide (Fe3O4/C) composites to obtain the Pd/Fe3O4-C catalysts with different Fe3O4 loadings. Their transmission electron microscopic (TEM) images show that the Pd nanoparticles were uniformly dispersed on the Fe3O4/C. Electroactivities of the prepared Pd/Fe3O4-C catalysts toward oxidations of C1-C3 …


Effect Of Allyl Thiourea On Nickel Electrodeposition From Solution Containing Ammonia And Chloride, Ya-Ning He, Liang Yuan, Zhi-Ying Ding, Shi-Jun Liu Dec 2017

Effect Of Allyl Thiourea On Nickel Electrodeposition From Solution Containing Ammonia And Chloride, Ya-Ning He, Liang Yuan, Zhi-Ying Ding, Shi-Jun Liu

Journal of Electrochemistry

The effects of allylthiourea (ATU) concentration on the cathodic polarization behaviour, nucleation and surface morphology of nickel electrodeposited on the glassy carbon electrode from ammonia-ammonium chloride-water (NH3-NH4Cl-H2O) solutions were investigated by cyclic voltammogry, cathodic polarization and current transient methods. The results revealed that the addition of ATU inhibited nickel deposition, which was enhanced with an increase in ATU concentration from 5 to 50 mg•L-1. The initial deposition kinetics corresponded to a model including instantaneous nucleation and diffusion controlled growth. In the presence of ATU, the initial nucleation of nickel electrocrystallisation remained unchanged. …


Outer Space: A Steam Voyage, Jancy Mcphee Dec 2017

Outer Space: A Steam Voyage, Jancy Mcphee

The STEAM Journal

SciArt Exchange offers multi-disciplinary art contests, artwork events, consulting, training and community resources to support science and technology education, collaboration, and innovation. Using a science-integrated- with-art approach, SciArt Exchange supports, prepares, and convenes people of all ages, backgrounds and affiliations to discuss and potentially solve space, science, and technology challenges. This field note shares the Humans in Space Art Program and the Project Mars Competition.


The Future Of Nuclear Security: A Medical Physicist’S Perspective, Katharine E. Thomson Dec 2017

The Future Of Nuclear Security: A Medical Physicist’S Perspective, Katharine E. Thomson

International Journal of Nuclear Security

Planning for the future of nuclear security is a vital and complex task, requiring cooperation and contribution from many disciplines and industries. This diversity of expertise should include the medical sector, which faces many of the same challenges as the nuclear industry: controlling access to dangerous material, creating a strong security culture, cooperating with the wider world and engaging the public.

Medical physicists, of which the author is one, oversee all aspects of small-scale radiation use. This paper discusses three key areas increasingly important to both medical and nuclear uses of radioactive materials: public engagement, prevention of nuclear and radiological …


Assessing And Enhancing Nuclear Safety And Security Culture For Small Facilities That Handle Radioactive Material, Solymosi Máté Dec 2017

Assessing And Enhancing Nuclear Safety And Security Culture For Small Facilities That Handle Radioactive Material, Solymosi Máté

International Journal of Nuclear Security

The use of radioactive sources is expanding all over the world and abreast the necessity of the enhancement of its safe and secure application is increasing too. In the nuclear industry, the safety and security are top priorities since decades. They share the same goal, to protect humans from the negative affect of the ionizing radiation. The human component of them is a significant factor and technical solutions can protect us so far and thus the culture for safety and security become a major focus. On the other hand, there are still some contradiction between recommendations and international guidance of …


The Future Of Nuclear Security In Moroccan Territory After The Creation Of The New Moroccan Agency Of Nuclear And Radiological Safety And Security: Opportunities And Challenges, Amal Touarsi, Amina Kharchaf Dec 2017

The Future Of Nuclear Security In Moroccan Territory After The Creation Of The New Moroccan Agency Of Nuclear And Radiological Safety And Security: Opportunities And Challenges, Amal Touarsi, Amina Kharchaf

International Journal of Nuclear Security

Nowadays, a security regime for protecting nuclear and radiological material—providing an intelligent national regulatory institution and establishing national security laws—is necessary in order for a state to ensure security of nuclear and radiological materials used within its borders.

This paper focuses on discussing the opportunities and challenges facing the future of nuclear security after the creation of the new Moroccan Agency of Nuclear and Radiological Safety and Security.


Note From The Editorial Board Dec 2017

Note From The Editorial Board

Dartmouth Undergraduate Journal of Science

No abstract provided.


Multiple Content Adaptive Intelligent Watermarking Schemes For The Protection Of Blocks Of A Document Image, Chetan Kr Mr., S Nirmala Dr. Dec 2017

Multiple Content Adaptive Intelligent Watermarking Schemes For The Protection Of Blocks Of A Document Image, Chetan Kr Mr., S Nirmala Dr.

Journal of Digital Forensics, Security and Law

Most of the documents contain different types of information such as white space, static information and dynamic information or mix of static and dynamic information. In this paper, multiple watermarking schemes are proposed for protection of the information content. The proposed approach comprises of three phases. In Phase-1, the edges of the source document image are extracted and the edge image is decomposed into blocks of uniform size. In Phase-2, GLCM features like energy, homogeneity, contrast and correlation are extracted from each block and the blocks are classified as no-information, static, dynamic and mix of static and dynamic information content …


A Data Hiding Scheme Based On Chaotic Map And Pixel Pairs, Sengul Dogan Sd Dec 2017

A Data Hiding Scheme Based On Chaotic Map And Pixel Pairs, Sengul Dogan Sd

Journal of Digital Forensics, Security and Law

Information security is one of the most common areas of study today. In the literature, there are many algorithms developed in the information security. The Least Significant Bit (LSB) method is the most known of these algorithms. LSB method is easy to apply however it is not effective on providing data privacy and robustness. In spite of all its disadvantages, LSB is the most frequently used algorithm in literature due to providing high visual quality. In this study, an effective data hiding scheme alternative to LSB, 2LSBs, 3LSBs and 4LSBs algorithms (known as xLSBs), is proposed. In this method, random …


Minerva 2017, The Honors College Dec 2017

Minerva 2017, The Honors College

Minerva

This issue of Minerva includes a feature on Honors College research collaboratives; an article on Honors students studying abroad in Singapore and Chile; an article reflecting upon the 15-year anniversary of the Honors College and the importance of mentorship; and articles on Honors students Isaiah Mansour and Aliya Uteova.


Process Models Discovery And Traces Classification: A Fuzzy-Bpmn Mining Approach., Kingsley Okoye Dr, Usman Naeem Dr, Syed Islam Dr, Abdel-Rahman H. Tawil Dr, Elyes Lamine Dr Dec 2017

Process Models Discovery And Traces Classification: A Fuzzy-Bpmn Mining Approach., Kingsley Okoye Dr, Usman Naeem Dr, Syed Islam Dr, Abdel-Rahman H. Tawil Dr, Elyes Lamine Dr

Journal of International Technology and Information Management

The discovery of useful or worthwhile process models must be performed with due regards to the transformation that needs to be achieved. The blend of the data representations (i.e data mining) and process modelling methods, often allied to the field of Process Mining (PM), has proven to be effective in the process analysis of the event logs readily available in many organisations information systems. Moreover, the Process Discovery has been lately seen as the most important and most visible intellectual challenge related to the process mining. The method involves automatic construction of process models from event logs about any domain …


Solar System Battery Backups For Reactor Coolant Pumps During Electricity Outages Resulting From Natural Disasters, Md. Shamsul Huda Sohel Nov 2017

Solar System Battery Backups For Reactor Coolant Pumps During Electricity Outages Resulting From Natural Disasters, Md. Shamsul Huda Sohel

International Journal of Nuclear Security

In a nuclear power plant, its coolant system is major safety equipment. Coolant system failure causes several accidents in nuclear history. There are so many causes for coolant system failure. One of them is lack of electric power for coolant pumps. In typically NPP there is backup system for power redundancy. In this article, focus on reactor coolant system and its backup power when main grid lines failure. Here discuss about solar backup power for batteries and increases a safety lines for reactor coolant pumps. So, our main goal is providing a battery backup from reliable natural source and ensuring …


The Effects Of Joule Heating On Electric-Driven Microfluidic Flow, Alexander P. Spitzer Nov 2017

The Effects Of Joule Heating On Electric-Driven Microfluidic Flow, Alexander P. Spitzer

Journal of the South Carolina Academy of Science

This study sought out to more clearly understand the relationship between Joule heating and fluid flow in microfluidic environments, and more specifically, under what circumstances would the fluid flow in the device possibly hinder an experiment being run on it. It had been previous theorised that an electric field may produce turbulence and even vortices within the fluid, which this study attempted to reproduce. Several variables were tested, namely insulating and conducting fluids, higher and lower AC voltages, Newtonian vs. non-Newtonian fluids, and higher and lower DC voltages. A correlation between these variables and turbulent flow was found, with more …


Template Induced Fabrication Of Nitrogen Doped Carbon Sheets As Electrode Materials In Supercapacitors, Tao Huang, Guang-Zhi Tao, Chong-Qing Yang, Deng Lu, Lie Ma, Dong-Qing Wu Oct 2017

Template Induced Fabrication Of Nitrogen Doped Carbon Sheets As Electrode Materials In Supercapacitors, Tao Huang, Guang-Zhi Tao, Chong-Qing Yang, Deng Lu, Lie Ma, Dong-Qing Wu

Journal of Electrochemistry

Due to the good electrical conductivity, high specific surface area, and excellent chemical/mechanical stability, carbon nanomaterials with two-dimensional morphology have gradually become the hot topic of the research on supercapacitors. Herein, we report for the first time the fabrication of nitrogen doped carbon sheets (NCSs). In our approach, the sheet-like magnisum aluminum (MgAl) layered double hydroxide was used as the hard template, which was mixed with o-phenylene diamine and iron chloride. The following thermal treatment could render the polymerization and carbonization of o-phenylene diamine. The NCSs with ordered hexagonal architectures were formed by final etching process of the thermally treated …


Recent Advances On Carbon And Transition Metallic Compound Electrodes For High-Performance Supercapacitors, Dun Lin, Xi-Yue Zhang, Yin-Xiang Zeng, Ming-Hao Yu, Xi-Hong Lu, Ye-Xiang Tong Oct 2017

Recent Advances On Carbon And Transition Metallic Compound Electrodes For High-Performance Supercapacitors, Dun Lin, Xi-Yue Zhang, Yin-Xiang Zeng, Ming-Hao Yu, Xi-Hong Lu, Ye-Xiang Tong

Journal of Electrochemistry

Supercapacitors (SCs) have stimulated intensive interests for their promising applications in electric vehicles and portable electronics, etc. Electrode material is the most important key component of SCs, which vastly determines the performance of SCs. Carbon and transition metallic compound materials have attracted considerable attention and been widely explored as electrode materials. However, the insufficient capacitance of carbon materials and unsatisfactory conductivity and cyclic stability of transition metallic compounds severely limit their implementation as robust SC electrodes. Herein, we highlight our recent efforts to boost the capacitive performance of carbon and metal oxide/nitride electrodes by rationally structural and componential design. The …


Preparation And Characterization Of Cellulose Acetate-Based Separator For Lithium-Ion Batteries, Hua-Feng Luo, Yuan-Dong Qiao Oct 2017

Preparation And Characterization Of Cellulose Acetate-Based Separator For Lithium-Ion Batteries, Hua-Feng Luo, Yuan-Dong Qiao

Journal of Electrochemistry

To improve the electrolyte wettability and thermal resistance of separators used for lithium-ion battery, a novel cellulose acetate (CA)-based separator is facilely prepared by non-solvent induced phase separation (NIPS) wet-process and investigated in lithium-ion batteries. Systematical investigations including morphological characterization, electrolyte wettability and thermal resistance testing were carried out. The results demonstrated that the CA-based separator exhibited well developed three-dimensional porous structures with porosity up to 65%, which is 1.5 times higher than that of PE separator. The CA separator also showed excellent electrolyte uptake (285%) and thermal stability at 150 oC for 30 min. Compared with the commercial …


Strategies To Enhance Energy Density For Supercapacitors, Jun-Wei Lang, Xu Zhang, Ru-Tao Wang, Xing-Bin Yan Oct 2017

Strategies To Enhance Energy Density For Supercapacitors, Jun-Wei Lang, Xu Zhang, Ru-Tao Wang, Xing-Bin Yan

Journal of Electrochemistry

The biggest advantage of supercapacitor lies in not only the excellent pulse and fast charging-discharging performance, but also the characteristics of long cycle life and wide operating temperature window with no pollution. However, the energy density of supercapacitor is low. In this paper, the working principle, the development status, defects and improvement method of supercapacitors are introduced. Based on the research workes of the supercapacitors with high energy density in our group, combined with the literature reports in recent years, the strategies to promote the energy density of supercarpacitors will be focused. The strategies for the enhancement of energy density …


Porous Carbon Materials Produced By Koh Activation For Supercapacitor Electrodes, Jiang-Lin Ye, Yan-Wu Zhu Oct 2017

Porous Carbon Materials Produced By Koh Activation For Supercapacitor Electrodes, Jiang-Lin Ye, Yan-Wu Zhu

Journal of Electrochemistry

Porous carbon materials with high specific surface area and excellent conductivity have wide applications in supercapacitor electrodes. Much effort has been made to synthesize and tailor the microstructures of porous carbon materials via various activation procedures (physical and chemical activations). In particular, the chemical activation using potassium hydroxide (KOH) as an activating reagent is promising because of the well-defined micropore size distribution and ultrahigh specific surface area up to 3000 m2·g-1 of the resulting porous carbons. Based mainly on the previous works taken by the authors and collaborators in the field, we have summarized the activation mechanism …


Lithium Ion Hybrid Capacitor With High Energy Density, Xian-Zhong Sun, Xiong Zhang, Kai Wang, Yan-Wei Ma Oct 2017

Lithium Ion Hybrid Capacitor With High Energy Density, Xian-Zhong Sun, Xiong Zhang, Kai Wang, Yan-Wei Ma

Journal of Electrochemistry

Lithium ion hybrid capacitors are electrochemical energy storage devices combining the advantages of both Li-ion battery and electrochemical capacitor. They can be extensively used in many fields. However, the commercialization of lithium ion hybrid capacitor has been encountered several problems, e.g., the device structure design, the screening of materials, the pre-lithiation process, and the interface between electrolyte and electrode, etc. This review summarizes the recent research advances in lithium ion hybrid capacitor with high energy density, including the selection of the active materials in cathode/anode and the separator, the pre-lithiation method using the three-electrode structure, the high- and low-temperature performances, …