Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

2017

Australian Institute for Innovative Materials - Papers

Flexible

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim Jan 2017

Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim

Australian Institute for Innovative Materials - Papers

The reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composites are coated onto the polycaprolactone (PCL) substrate via spray coating technique to prepare a flexible supercapacitor. The electrochemical properties of the flexible PCL supercapacitor as a function of bending cycles and angles are evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the flexible PCL supercapacitor exhibit capacitive behavior even after prolonged bending cycles up to 500. The highest capacitance value of the unbent PCL supercapacitor is 52.5 F g-1 which retained 65% after 500 bending with 6000th galvanostatic charge/discharge cycles.


Ultra-Light And Flexible Pencil-Trace Anode For High Performance Potassium-Ion And Lithium-Ion Batteries, Zhixin Tai, Yajie Liu, Qing Zhang, Tengfei Zhou, Zaiping Guo, Hua-Kun Liu, Shi Xue Dou Jan 2017

Ultra-Light And Flexible Pencil-Trace Anode For High Performance Potassium-Ion And Lithium-Ion Batteries, Zhixin Tai, Yajie Liu, Qing Zhang, Tengfei Zhou, Zaiping Guo, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs), significantly better than in lithium-ion batteries (LIBs), with capacity retention of 66% for the KIB vs. 28% for the LIB …