Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

2017

Old Dominion University

Deep learning

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee Jul 2017

Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee

Electrical & Computer Engineering Theses & Dissertations

Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a …


Deep Models For Engagement Assessment With Scarce Label Information, Feng Li, Guangfan Zhang, Wei Wang, Roger Xu, Tom Schnell, Jonathan Wen, Frederic Mckenzie, Jiang Li Jan 2017

Deep Models For Engagement Assessment With Scarce Label Information, Feng Li, Guangfan Zhang, Wei Wang, Roger Xu, Tom Schnell, Jonathan Wen, Frederic Mckenzie, Jiang Li

Electrical & Computer Engineering Faculty Publications

Task engagement is defined as loadings on energetic arousal (affect), task motivation, and concentration (cognition) [1]. It is usually challenging and expensive to label cognitive state data, and traditional computational models trained with limited label information for engagement assessment do not perform well because of overfitting. In this paper, we proposed two deep models (i.e., a deep classifier and a deep autoencoder) for engagement assessment with scarce label information. We recruited 15 pilots to conduct a 4-h flight simulation from Seattle to Chicago and recorded their electroencephalograph (EEG) signals during the simulation. Experts carefully examined the EEG signals and labeled …