Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Bayesian Dictionary Learning For Single And Coupled Feature Spaces, Li He Dec 2013

Bayesian Dictionary Learning For Single And Coupled Feature Spaces, Li He

Doctoral Dissertations

Over-complete bases offer the flexibility to represent much wider range of signals with more elementary basis atoms than signal dimension. The use of over-complete dictionaries for sparse representation has been a new trend recently and has increasingly become recognized as providing high performance for applications such as denoise, image super-resolution, inpaiting, compression, blind source separation and linear unmixing. This dissertation studies the dictionary learning for single or coupled feature spaces and its application in image restoration tasks. A Bayesian strategy using a beta process prior is applied to solve both problems.

Firstly, we illustrate how to generalize the existing beta …


Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang Dec 2013

Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang

Doctoral Dissertations

The all-vanadium redox flow battery (VRFB) is an excellent prospect for large scale energy storage in an electricity grid level application. High battery performance has lately been achieved by using a novel cell configuration with advanced materials. However, more work is still required to better understand the reaction kinetics and transport behaviors in the battery to guide battery system optimization and new battery material development. The first part of my work is the characterization of the battery systems with flow-through or flow-by cell configurations. The configuration difference between two cell structures exhibit significantly different polarization behavior. The battery output can …


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Evaluating Predictability In The Community Earth System Model In Response To The Eruption Of Mount Pinatubo, Abigail Laurel Gaddis Aug 2013

Evaluating Predictability In The Community Earth System Model In Response To The Eruption Of Mount Pinatubo, Abigail Laurel Gaddis

Doctoral Dissertations

A central goal of climate research is to determine the perceptible effects of climate change on humans; in other words, the regional and decadal scale effects of carbon dioxide forcing. Identifying the most pronounced and long-lasting responses of climate variables to forcing is important for decadal prediction since forcing terms are a source of predictability on those time scales. Powerful volcanic eruptions provide a transient forcing on the climate system, creating a test bed for climate models. In this study, the Mount Pinatubo eruption is simulated in the Community Earth System Model, CESM1.0, for three model configurations: fully coupled T85 …


Investigation Of Time And Position Resolved Alpha Transducers For Multi-Modal Imaging With A D-T Neutron Generator, Joshua William Cates Aug 2013

Investigation Of Time And Position Resolved Alpha Transducers For Multi-Modal Imaging With A D-T Neutron Generator, Joshua William Cates

Doctoral Dissertations

Deuterium-Tritium (D-T) neutron generators have been used as an active interrogation source for associated particle imaging (API) techniques. The D-T reaction yields a 14.1 MeV neutron and a 3.5 MeV alpha (or assoicated) particle, projected nearly back-to-back. The kinetics of the reaction allow the direction and initial time of the neutron to be determined utilizing position sensitive detectors for both the alpha and neutron. This information facilitates multi-modal fast neutron imaging of inspection objects and closed containers to infer the geometry within them and the presence of special nuclear material (SNM). Since position and time of interaction of the alpha …


Automated Generation Of Simulink Models For Enumeration Hybrid Automata, David Aaron Heise Aug 2013

Automated Generation Of Simulink Models For Enumeration Hybrid Automata, David Aaron Heise

Masters Theses

An enumeration hybrid automaton has been shown in principle to be ready for automated transformation into a Simulink implementation. This paper describes a strategy for and a demonstration of automated construction. This is accomplished by designing a data model which represents EHA data and providing a mapping from EHA data points to Simulink blocks.


Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan May 2013

Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan

Doctoral Dissertations

Plasmonic nanomaterials have attracted a lot of attention recently due to their application in various fields such as chemical and biological sensing, catalysis, energy harvesting and optical devices. However, there is a need to address several outstanding issues with these materials, including cost-effective synthesis, tunability in plasmonic characteristics, and long term stability. In this thesis, we have focused on bimetallic nanoparticles (NPs) of Ag and Co due to their immiscibility as well as their individual properties. First, a pulsed laser induced dewetting route was used to synthesize Ag-Co bimetallic plasmonic NPs. An synthesis parameter space was derived to show the …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


3design - Holographic Telecollaboration Interface, Thomas W. De Wit, Mark Gill, Scott Freemon, Preston Garland May 2013

3design - Holographic Telecollaboration Interface, Thomas W. De Wit, Mark Gill, Scott Freemon, Preston Garland

Chancellor’s Honors Program Projects

No abstract provided.


Tor Bridge Distribution Powered By Threshold Rsa, Jordan Hunter Deyton May 2013

Tor Bridge Distribution Powered By Threshold Rsa, Jordan Hunter Deyton

Masters Theses

Since its inception, Tor has offered anonymity for internet users around the world. Tor now offers bridges to help users evade internet censorship, but the primary distribution schemes that provide bridges to users in need have come under attack. This thesis explores how threshold RSA can help strengthen Tor's infrastructure while also enabling more powerful bridge distribution schemes. We implement a basic threshold RSA signature system for the bridge authority and a reputation-based social network design for bridge distribution. Experimental results are obtained showing the possibility of quick responses to requests from honest users while maintaining both the secrecy and …


Programming Dense Linear Algebra Kernels On Vectorized Architectures, Jonathan Lawrence Peyton May 2013

Programming Dense Linear Algebra Kernels On Vectorized Architectures, Jonathan Lawrence Peyton

Masters Theses

The high performance computing (HPC) community is obsessed over the general matrix-matrix multiply (GEMM) routine. This obsession is not without reason. Most, if not all, Level 3 Basic Linear Algebra Subroutines (BLAS) can be written in terms of GEMM, and many of the higher level linear algebra solvers' (i.e., LU, Cholesky) performance depend on GEMM's performance. Getting high performance on GEMM is highly architecture dependent, and so for each new architecture that comes out, GEMM has to be programmed and tested to achieve maximal performance. Also, with emergent computer architectures featuring more vector-based and multi to many-core processors, GEMM performance …