Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang Jan 2023

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Bioelectrics Publications

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the …


Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano Jan 2022

Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Nb₃Sn is of interest as a coating for SRF cavities due to its higher transition temperature Tc ~18.3 K and superheating field Hsh ~400 mT, both are twice that of Nb. Nb₃Sn coated cavities can achieve high-quality factors at 4 K and can replace the bulk Nb cavities operated at 2 K. A cylindrical magnetron sputtering system was built, commissioned, and used to deposit Nb₃Sn on the inner surface of a 2.6 GHz single-cell Nb cavity. With two identical cylindrical magnetrons, this system can coat a cavity with high symmetry and uniform thickness. Using Nb-Sn multilayer sequential sputtering followed by …


Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana Jul 2020

Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana

Chemistry Faculty Publications

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA …


Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er Feb 2017

Laser Shock Wave Assisted Patterning On Niti Shape Memory Alloy Surfaces, Dovletgeldi Seyitliyev, Peizhen Li, Khomidkhodza Kholikov, Byron Grant, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning …


Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George Feb 2017

Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George

CCPO Publications

This Special Topic Section is dedicated to the life and memory of John Leask Lumley(1930-2015), professor and scientist extraordinaire.


Microstructure Refinement In W-Y2o3 Alloy Fabricated By Wet Chemical Method With Surfactant Addition And Subsequent Spark Plasma Sintering, Zhi Dong, Nan Liu, Zongqing Ma, Chenxi Liu, Qianying Guo, Zeid Abdullah Alothman, Yusuke Yamauchi, Md. Shahriar Al Hossain, Yongchang Liu Jan 2017

Microstructure Refinement In W-Y2o3 Alloy Fabricated By Wet Chemical Method With Surfactant Addition And Subsequent Spark Plasma Sintering, Zhi Dong, Nan Liu, Zongqing Ma, Chenxi Liu, Qianying Guo, Zeid Abdullah Alothman, Yusuke Yamauchi, Md. Shahriar Al Hossain, Yongchang Liu

Australian Institute for Innovative Materials - Papers

With the aim of preparing high performance oxide-dispersion-strengthened tungsten based alloys by powder metallurgy, the W-Y 2 O 3 composite nanopowder precursor was fabricated by an improved wet chemical method with anion surfactant sodium dodecyl sulfate (SDS) addition. It is found that the employment of SDS can dramatically decrease W grain size (about 40 nm) and improve the size uniformity. What's more, SDS addition can also remarkably improve the uniform dispersion of Y 2 O 3 particles during the synthesis process. For the alloy whose powder precursor was fabricated by traditional wet chemical method without SDS addition, only a few …


Short Oxygen Plasma Treatment Leading To Long-Term Hydrophilicity Of Conductive Pcl-Ppy Nanofiber Scaffolds, Sajjad Shafei, Javad Foroughi, Zhiqiang Chen, Cynthia S. Wong, Minoo Naebe Jan 2017

Short Oxygen Plasma Treatment Leading To Long-Term Hydrophilicity Of Conductive Pcl-Ppy Nanofiber Scaffolds, Sajjad Shafei, Javad Foroughi, Zhiqiang Chen, Cynthia S. Wong, Minoo Naebe

Australian Institute for Innovative Materials - Papers

No abstract provided.


Effects Of Plasma Processing On Secondary Electron Yield Of Niobium Samples, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov Jan 2015

Effects Of Plasma Processing On Secondary Electron Yield Of Niobium Samples, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov

Physics Faculty Publications

Impurities deposited on the surface of Nb during both the forming and welding of accelerator cavities add to the imperfections of the sheet metal, which then affects the overall performance of the cavities. This leads to a drop in the Q factor and limits the maximum acceleration gradient achievable per unit length of the cavities. The performance can be improved either by adjusting the fabrication and preparation parameters, or by mitigating the effects of fabrication and preparation techniques used. We have developed the experimental setup to determine Secondary Electron Yield (SEY) from the surface of Nb samples. Our aim is …


Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar Jan 2014

Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar

Electrical & Computer Engineering Faculty Publications

During the last two decades, research efforts on the application of low temperature plasmas in biology and medicine have positioned nonequilibrium lowtemperature plasmas as a technology that has the potential of revolutionizing healthcare.[1,2] Low temperature plasmas can be applied in direct contact with living tissues to inactivate bacteria,[3] to disinfect wounds and accelerate wound healing,[4] and to induce damage in some cancer cells.[5–11]


The Effect Of Microscopic Texture On The Direct Plasma Surface Passivation Of Si Solar Cells, S Mehrabian, S Xu, A A. Qaemi, B Shokri, C Chan, K Ostrikov Jan 2013

The Effect Of Microscopic Texture On The Direct Plasma Surface Passivation Of Si Solar Cells, S Mehrabian, S Xu, A A. Qaemi, B Shokri, C Chan, K Ostrikov

Australian Institute for Innovative Materials - Papers

Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105Hþ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and …


Ignition Of A Large Volume Plasma With A Plasma Jet, M. Laroussi, M. A. Akman Jan 2011

Ignition Of A Large Volume Plasma With A Plasma Jet, M. Laroussi, M. A. Akman

Electrical & Computer Engineering Faculty Publications

Here we report on a method to generate a long plasma plume and to ignite a large volume plasma by means of the jet. The plasma plume is generated by our tube reactor and then introduced into a chamber where the pressure is controlled. We discovered there are three operating phases:Aphasewhere the plume length remains approximately constant, followed by a second phase where the jet increases in length as the pressure decreases. Then at pressures below 70 Torr a mode transition occurs where the plume length decreases and the plasma expands until the entire chamber is filled.


Invited Article: Data Analysis Of The Floating Potential Measurement Unit Aboard The International Space Station, Aroh Barjatya, Charles M. Swenson, Donald C. Thompson, Kenneth H. Wright Jan 2009

Invited Article: Data Analysis Of The Floating Potential Measurement Unit Aboard The International Space Station, Aroh Barjatya, Charles M. Swenson, Donald C. Thompson, Kenneth H. Wright

Publications

We present data from the Floating Potential Measurement Unit (FPMU) that is deployed on the starboard truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of a floating potential probe, a wide-sweeping spherical Langmuir probe, a narrow-sweeping cylindrical Langmuir probe, and a plasma impedance probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data are presented from August 5, 2006 and March …


Previous Heat Treatment Inducing Different Plasma Nitriding Behaviors In Martensitic Stainless Steels, C A. Figueroa, F Alvarez, D Rg Mitchell, G A. Collins, K T. Short Jan 2006

Previous Heat Treatment Inducing Different Plasma Nitriding Behaviors In Martensitic Stainless Steels, C A. Figueroa, F Alvarez, D Rg Mitchell, G A. Collins, K T. Short

Australian Institute for Innovative Materials - Papers

In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI3) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the a' -martensite is …


Reconstruction Of Two-Dimensional Magnetopause Structures From Cluster Observations: Verification Of Method, H. Hasegawa, B. U. Ö Sonnerup, M. W. Dunlop, A. Balogh, S. E. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, H. Reme Apr 2004

Reconstruction Of Two-Dimensional Magnetopause Structures From Cluster Observations: Verification Of Method, H. Hasegawa, B. U. Ö Sonnerup, M. W. Dunlop, A. Balogh, S. E. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, H. Reme

Dartmouth Scholarship

A recently developed technique for reconstructing approximately two-dimensional (∂/∂z≈0), time-stationary magnetic field structures in space is applied to two magnetopause traversals on the dawnside flank by the four Cluster spacecraft, when the spacecraft separation was about 2000km. The method consists of solving the Grad-Shafranov equation for magnetohydrostatic structures, using plasma and magnetic field data measured along a single spacecraft trajectory as spatial initial values. We assess the usefulness of this single-spacecraft-based technique by comparing the magnetic field maps produced from one spacecraft with the field vectors that other spacecraft actually observed. For an optimally selected invariant (z)-axis, the correlation between …


Influence Of Antenna Aiming On Ece In Mast, Josef Preinhaelter, Jakub Urban, Pavol Pavlo, Vladimir Shevchenko, Martin Valovič, Linda L. Vahala, George Vahala Jan 2004

Influence Of Antenna Aiming On Ece In Mast, Josef Preinhaelter, Jakub Urban, Pavol Pavlo, Vladimir Shevchenko, Martin Valovič, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

The effect of the direction of the detected beam on the intensity of ECE is studied. It is found that the combined effects of the strong dependence of the conversion efficiencey of O mode at the plasma resonance on the direction of the incident wave and the partial screening of the beam waist by the MAST vessel wall, can be responsible for the weakening of ECE emission for some frequencies. The theoretical model for ECE data interpretation on MAST has been significantly improved. New features of the model are as follows: the quasioptical treatment of the receiving antenna, interference, polarization …


Electron Bernstein Wave-X-O Mode Conversion And Electron Cyclotron Emission In Mast, Josef Preinhaelter, Pavol Pavlo, Vladimir Shevchenko, Martin Valovic, Linda L. Vahala, George Vahala Jan 2003

Electron Bernstein Wave-X-O Mode Conversion And Electron Cyclotron Emission In Mast, Josef Preinhaelter, Pavol Pavlo, Vladimir Shevchenko, Martin Valovic, Linda L. Vahala, George Vahala

Electrical & Computer Engineering Faculty Publications

Electron cyclotron emission (ECE) from overdense plasmas can only occur due to electron Bernstein waves (EBW) mode converting near the upper hybrid region to an electromagnetic wave. Experimental data of ECE observations on MAST are studied and compared with EBW-X-O mode conversion modeling results.


Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli Jan 1992

Effect Of Magnetic And Density Fluctuations On The Propagation Of Lower Hybrid Waves In Tokamaks, George Vahala, Linda L. Vahala, Paul T. Bonoli

Electrical & Computer Engineering Faculty Publications

Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization, The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For …


Electromagnetic Wave Scattering From Magnetic Fluctuations In Tokamaks, L. L. Vahala, G. Vahala, N. Bretz Jan 1992

Electromagnetic Wave Scattering From Magnetic Fluctuations In Tokamaks, L. L. Vahala, G. Vahala, N. Bretz

Electrical & Computer Engineering Faculty Publications

Cross sections are calculated for electromagnetic wave scattering and mode transformation from magnetic and density fluctuations in a homogeneous plasma. For the special case of scattering perpendicular to the magnetic field, density fluctuations scatter ordinary to ordinary and extraordinary to extraordinary modes-but cannot transform these modes. On the other hand, magnetic fluctuations perpendicular to the field can transform modes but cannot scatter on a single branch. For incident frequencies on the order of the electron plasma frequency or gyrofrequency, the cross sections for scattering and transformation due to field and density fluctuations have a similar value. Estimates are given for …