Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Selected Works

Composite

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Wet-Spinning Of Pedot:Pss/Functionalized-Swnts Composite: A Facile Route Toward Production Of Strong And Highly Conducting Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Mar 2014

Wet-Spinning Of Pedot:Pss/Functionalized-Swnts Composite: A Facile Route Toward Production Of Strong And Highly Conducting Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf ≤ 0.02. Further increase of PEG-SWNTs …


Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Mar 2014

Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

In order to exploit the inherent properties of carbon nanotubes (CNT) in any polymer composite, systematic control of carbon nanotube loading and protocols that mitigate against CNT bundling are required. If such composites are to be rendered in fiber form via wet-spinning, then CNT bundling during the coagulation process must also be avoided. Here we have achieved this by utilizing highly exfoliated single walled carbon nanotubes (SWNT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) to obtain wet-spinnable composite formulations at various nanotube volume fractions (Vf). The addition of only 0.02 Vf of aggregate-free and individually dispersed SWNT resulted in a significant enhancement of modulus, …


Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou Mar 2014

Direct Synthesis Of Rgo/Cu2o Composite Films On Cu Foil For Supercapacitors, Xiangmao Dong, Kun Wang, Chongjun Zhao, Xiuzhen Qian, Shi Chen, Zhen Li, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu2O and reduction of GO, in which Cu2O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu2O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry …


Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou Mar 2014

Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou

Shi Xue Dou

A high performance Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li3V2(PO4)3 with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li3V 2(PO4)3 was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li 3V2(PO4)3 electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g-1 and 103.4 mAh g-1, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 …


Fusion Of Nacre, Mussel, And Lotus Leaf: Bio-Inspired Graphene Composite Paper With Multifunctional Integration, Da Zhong, Qinglin Yang, Lin Guo, S X. Dou, Kesong Liu, Lei Jiang Mar 2014

Fusion Of Nacre, Mussel, And Lotus Leaf: Bio-Inspired Graphene Composite Paper With Multifunctional Integration, Da Zhong, Qinglin Yang, Lin Guo, S X. Dou, Kesong Liu, Lei Jiang

Shi Xue Dou

Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide …


Microstructure And Metal-Dielectric Transition Behaviour In A Percolative Al2o3-Fe Composite Via Selective Reduction, Zidong Zhang, Runhua Fan, Zhicheng Shi, Kelan Yan, Zhijia Zhang, Xiaolin Wang, S X. Dou Mar 2014

Microstructure And Metal-Dielectric Transition Behaviour In A Percolative Al2o3-Fe Composite Via Selective Reduction, Zidong Zhang, Runhua Fan, Zhicheng Shi, Kelan Yan, Zhijia Zhang, Xiaolin Wang, S X. Dou

Shi Xue Dou

The electromagnetic (EM) medium plays a key role in many areas, such as communications, stealth technology, etc. Different EM properties are required for different applications. In this paper, we have obtained tunable EM properties in an Al2O3-Fe composite via selective reduction. By adjusting the content of one functional component, the composite shows totally different EM properties, in accordance with the predictions of effective medium theory. Hybrid EM behaviour is obtained near the percolation threshold, which has a close relationship with its microstructure.


A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite For Use In Lithium-Sulfur Batteries, Jianli Wang, Lin Lu, Dongqi Shi, Richard Tandiono, Zhaoxiang Wang, Konstantin Konstantinov, Hua Liu Jul 2013

A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite For Use In Lithium-Sulfur Batteries, Jianli Wang, Lin Lu, Dongqi Shi, Richard Tandiono, Zhaoxiang Wang, Konstantin Konstantinov, Hua Liu

Jianli Wang

A novel ternary composite, polypyrrole (PPy)-coated sulphur-carbon nanotube (S-CNT), is synthesised by using an in situ, one-pot method. Firstly, elemental sulfur is loaded into the CNT network by a solution-based processing technique. Then conducting PPy is coated on the surface of the S-CNT composite to form the S-CNT-PPy ternary composite by carrying out polymerization of the pyrrole monomer in situ. The ternary composite is tested as a cathode for lithium-sulfur batteries. The results show that PPy coating improves significantly the performance of the binary composites (S-CNT and S-PPy). The conducting PPy is believed to serve multiple functions in the composite: …


Ybco Coated Conductor Using Biaxially Textured Clad Composite Ni-Mn/Ni-Cr Substrate, D Q. Shi, S X. Dou, R. K. Ko, J K. Chung, H S. Kim, H S. Ha, K J. Song, C. Park Jun 2013

Ybco Coated Conductor Using Biaxially Textured Clad Composite Ni-Mn/Ni-Cr Substrate, D Q. Shi, S X. Dou, R. K. Ko, J K. Chung, H S. Kim, H S. Ha, K J. Song, C. Park

Shi Xue Dou

A new biaxially textured composite tape of Ni–4.5% Mn/Ni–1.5% Cr was used as a substrate for a YBCO coated conductor through the RABiTS approach. Multi-layer CeO2/YSZ/Y2O3 buffer layers and YBCO film were deposited on the substrate by pulsed laser deposition. The deposition conditions of the buffer layers and the YBCO were studied and compared. Good biaxial textures have been obtained for buffer layers on composite Ni–4.5% Mn/Ni–1.5% Cr substrates. Scanning electron microscopy on sample cross-sections was used to examine the interface and diffusion of oxygen. The uniform formation of an Ni–Mn–O layer between NiO and the Ni–4.5% Mn layer was …


Preparation And Characterisation Of Graphene Composite Hydrogels, Nicholas J. Whiteside, Gordon G. Wallace, Marc In Het Panhuis May 2013

Preparation And Characterisation Of Graphene Composite Hydrogels, Nicholas J. Whiteside, Gordon G. Wallace, Marc In Het Panhuis

Gordon Wallace

Stable dispersions containing graphene and gellan gum are used to form composite films. Incorporation of graphene into the gellan gum matrix results in mechanical reinforcement and electrical conductivity at low and high graphene loading fractions, respectively. Graphene-containing gellan gum hydrogel films are prepared by immersion of composite films in Ca2+ cross-linking solutions. The resulting hydrogels are electrically conducting and exhibit reinforcement compared to the corresponding gellan gum hydrogels. 2013 Elsevier B.V.


Flexible Free-Standing Graphene-Silicon Composite Film For Lithium-Ion Batteries, Jiazhao Wang, Chao Zhong, Shulei Chou, Hua Liu Feb 2013

Flexible Free-Standing Graphene-Silicon Composite Film For Lithium-Ion Batteries, Jiazhao Wang, Chao Zhong, Shulei Chou, Hua Liu

Shulei Chou

Flexible, free-standing, paper-like, graphene-silicon composite materials have been synthesized by a simple, one-step, in-situ filtration method. The Si nanoparticles are highly encapsulated in a graphene nanosheet matrix. The electrochemical results show that graphene-Si composite film has much higher discharge capacity beyond 100 cycles (708 mAh g− 1) than that of the cell with pure graphene (304 mAh g− 1). The graphene functions as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized silicon provides the high capacity.


Enhanced Reversible Lithium Storage In A Nanosize Silicon/Graphene Composite, Shulei Chou, Jiazhao Wang, Mohammad Choucair, Hua Liu, John Stride, S Dou Nov 2012

Enhanced Reversible Lithium Storage In A Nanosize Silicon/Graphene Composite, Shulei Chou, Jiazhao Wang, Mohammad Choucair, Hua Liu, John Stride, S Dou

Shulei Chou

Si/graphene composite was prepared by simply mixing of commercially available nanosize Si and graphene. Electrochemical tests show that the Si/graphene composite maintains a capacity of 1168 mAh g-1 and an average coulombic efficiency of 93% up to 30 cycles. EIS indicates that the Si/graphene composite electrode has less than 50% of the charge-transfer resistance compared with nanosize Si electrode, evidencing the enhanced ionic conductivity of Si/graphene composite. The enhanced cycling stability is attributed to the fact that the Si/graphene composite can accommodate large volume charge of Si and maintain good electronic contact.


One-Step Spray Pyrolysis Synthesized Cuo-Carbon Composite Combined With Carboxymethyl Cellulose Binder As Anode For Lithium-Ion Batteries, Chao Zhong, Jia-Zhao Wang, Xuan-Wen Gao, Shulei Chou, Konstantin Konstantinov, Hua Liu Nov 2012

One-Step Spray Pyrolysis Synthesized Cuo-Carbon Composite Combined With Carboxymethyl Cellulose Binder As Anode For Lithium-Ion Batteries, Chao Zhong, Jia-Zhao Wang, Xuan-Wen Gao, Shulei Chou, Konstantin Konstantinov, Hua Liu

Shulei Chou

Copper oxide-carbon composite with hollow sphere structure has been synthesized by a one-step spray pyrolysis method and tested as anode material for lithium-ion batteries. Different analytical methods, including X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and systematic electrochemical tests were performed. The results demonstrate that the CuO-carbon composite in conjunction with carboxymethyl cellulose (CMC) binder has an excellent electrochemical performance, with a capacity of 577 mAh g-1 up to 100 cycles. The usage of the water soluble binder, CMC, not only obviously improves the electrochemical performance, but also makes the electrode fabrication process much easier and …