Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Hardware Acceleration Of Numerical Methods For Solving Ordinary Differential Equations, Soham Bhattacharya Jun 2024

Hardware Acceleration Of Numerical Methods For Solving Ordinary Differential Equations, Soham Bhattacharya

Theses and Dissertations

Along with the advancement in technology, the role of hardware accelerators is increasing consistently, delivering advancements in scientific simulations and data analysis in scientific computing, signal processing tasks in communication systems, matrix operations, and neural network computations in artificial intelligence and machine learning models. On the other hand, several high-speed computer applications in this era of high-performance computing often depend on ordinary differential equations (ODEs); however, their nonlinear nature can present a challenge to obtaining analytic solutions. Consequently, numerical approaches prove effective in delivering only approximate solutions to these equations. This research discusses the implementation of a customized hardware accelerator …


Federated Learning Based Autoencoder Ensemble System For Malware Detection On Internet Of Things Devices, Steven Edward Arroyo Jun 2024

Federated Learning Based Autoencoder Ensemble System For Malware Detection On Internet Of Things Devices, Steven Edward Arroyo

Theses and Dissertations

New technologies are being introduced at a rate faster than ever before and smaller in size. Due to the size of these devices, security is often difficult to implement. The existing solution is a firewall-segmented “IoT Network” that only limits the effect of these infected devices on other parts of the network. We propose a lightweight unsupervised hybrid-cloud ensemble anomaly detection system for malware detection. We perform transfer learning using a generalized model trained on multiple IoT device sources to learn network traffic on new devices with minimal computational resources. We further extend our proposed system to utilize federated learning …


Back To The Future: A Case For The Resurgence Of Approximation Theory For Enabling Data Driven “Intelligence”, Michael Dominic Ciocco Jun 2024

Back To The Future: A Case For The Resurgence Of Approximation Theory For Enabling Data Driven “Intelligence”, Michael Dominic Ciocco

Theses and Dissertations

Artificial Intelligence (AI) has exploded into mainstream consciousness with commercial investments exceeding $90 billion in the last year alone. Inasmuch as consumer-facing applications such ChatGPT offer astounding access to algorithms that were hitherto restricted to academic research labs, public focus of attention on AI has created an avalanche of misinformation. The nexus of investor-driven hype, “surprising” inaccuracies in the answers provided by AI models – now anthropomorphically labeled as “hallucinations”, and impending legislation by well-meaning and concerned governments has resulted in a crisis of confidence in the science of AI. The primary driver for AI’s recent growth is the convergence …


Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti Apr 2024

Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti

Theses and Dissertations

Unlike liquids and crystalline solids, glassy materials exist in a constant state of structural nonequilibrium. Therefore, a comprehensive understanding of material kinetics is critical for understanding the structure-property-processing relationships of polymeric materials. Amorphous materials universally display low-frequency Raman features related to the phonon density of states resulting in a broad disorder band for Raman shifts below 100 cm-1, which is related to the conformational entropy and the modulus. This disorder band is dominated by the Boson peak, a feature due to phonon scattering because of disorder and can be related to the transverse sound velocity of the material, and a …


Mri Image Regression Cnn For Bone Marrow Lesion Volume Prediction, Kevin Yanagisawa Feb 2024

Mri Image Regression Cnn For Bone Marrow Lesion Volume Prediction, Kevin Yanagisawa

Theses and Dissertations

Bone marrow lesions (BMLs), occurs from fluid build up in the soft tissues inside your bone. This can be seen on magnetic resonance imaging (MRI) scans and is characterized by excess water signals in the bone marrow space. This disease is commonly caused by osteoarthritis (OA), a degenerative join disease where tissues within the joint breakdown over time [1]. These BMLs are an emerging target for OA, as they are commonly related to pain and worsening of the diseased area until surgical intervention is required [2]–[4]. In order to assess the BMLs, MRIs were utilized as input into a regression …


Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov Jan 2024

Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov

Theses and Dissertations

This study explores the potential of beryllium (Be) as an alternative dopant to magnesium (Mg) for achieving higher hole concentrations in gallium nitride (GaN). Despite Mg prominence as an acceptor in optoelectronic and high-power devices, its deep acceptor level at 0.22 eV above the valence band limits its effectiveness. By examining Be, this research aims to pave the way to overcoming these limitations and extend the findings to aluminum nitride and aluminum gallium nitride (AlGaN) alloy. Key contributions of this work include. i)Identification of three Be-related luminescence bands in GaN through photoluminescence spectroscopy, improving the understanding needed for further material …


Developing Machine Learning And Time-Series Analysis Methods With Applications In Diverse Fields, Muhammed Aljifri Jan 2024

Developing Machine Learning And Time-Series Analysis Methods With Applications In Diverse Fields, Muhammed Aljifri

Theses and Dissertations

This dissertation introduces methodologies that combine machine learning models with time-series analysis to tackle data analysis challenges in varied fields. The first study enhances the traditional cumulative sum control charts with machine learning models to leverage their predictive power for better detection of process shifts, applying this advanced control chart to monitor hospital readmission rates. The second project develops multi-layer models for predicting chemical concentrations from ultraviolet-visible spectroscopy data, specifically addressing the challenge of analyzing chemicals with a wide range of concentrations. The third study presents a new method for detecting multiple changepoints in autocorrelated ordinal time series, using the …


Adaptable And Trustworthy Machine Learning For Human Activity Recognition From Bioelectric Signals, Morgan S. Stuart Jan 2024

Adaptable And Trustworthy Machine Learning For Human Activity Recognition From Bioelectric Signals, Morgan S. Stuart

Theses and Dissertations

Enabling machines to learn measures of human activity from bioelectric signals has many applications in human-machine interaction and healthcare. However, labeled activity recognition datasets are costly to collect and highly varied, which challenges machine learning techniques that rely on large datasets. Furthermore, activity recognition in practice needs to account for user trust - models are motivated to enable interpretability, usability, and information privacy. The objective of this dissertation is to improve adaptability and trustworthiness of machine learning models for human activity recognition from bioelectric signals. We improve adaptability by developing pretraining techniques that initialize models for later specialization to unseen …