Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Gordon Wallace

Selected Works

2014

Composite

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Wet-Spinning Of Pedot:Pss/Functionalized-Swnts Composite: A Facile Route Toward Production Of Strong And Highly Conducting Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Mar 2014

Wet-Spinning Of Pedot:Pss/Functionalized-Swnts Composite: A Facile Route Toward Production Of Strong And Highly Conducting Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf ≤ 0.02. Further increase of PEG-SWNTs …


Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Mar 2014

Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

In order to exploit the inherent properties of carbon nanotubes (CNT) in any polymer composite, systematic control of carbon nanotube loading and protocols that mitigate against CNT bundling are required. If such composites are to be rendered in fiber form via wet-spinning, then CNT bundling during the coagulation process must also be avoided. Here we have achieved this by utilizing highly exfoliated single walled carbon nanotubes (SWNT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) to obtain wet-spinnable composite formulations at various nanotube volume fractions (Vf). The addition of only 0.02 Vf of aggregate-free and individually dispersed SWNT resulted in a significant enhancement of modulus, …