Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Doctoral Dissertations

Pure sciences

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang Jul 2017

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang

Doctoral Dissertations

Electrochemical methods are widely used for chronic neurochemical sensing, but thus far, the organic solution redox reactions fouled the electrodes' surface. It caused the reduction of sensitivity and the electrodes' lifetime.

Here, we present the boron-doped nanocrystalline diamond microelectrodes (BDUNCD) as the next generation electrode material for neurochemical sensor development. To aid in long-term chronic monitoring of neurochemicals, they have a wide window of electrochemical potential, extremely low background current, and excellent chemical inertness. The main research goal is to reduce the rate of electrode fouling due to the reaction by-products, and significantly extend their useful lifetime.

We systematically characterize …


Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal Jul 2017

Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal

Doctoral Dissertations

NOx (NO and NO2) exhaust gas sensors for diesel powered vehicles have traditionally consisted of porous platinum (Pt) electrodes along with a dense ZrO2 based electrolyte. Advancement in diesel engine technology results in lower NOx emissions. Although Pt is chemically and mechanically tolerant to the extreme exhaust gas environment, it is also a strong catalyst for oxygen reduction, which can interfere with the detection of NOx at concentrations below 100 ppm. Countering this behavior can add to the complexity and cost of the conventional NO x sensor design. Recent studies have shown that dense electrodes are less prone to heterogeneous …


Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike Jan 2017

Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike

Doctoral Dissertations

The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps.

The alumina supported catalysts were dominated by γ-alumina …


A Study Of Mathematics Achievement, Placement, And Graduation Of Engineering Students, Sara Hahler Blazek Jan 2017

A Study Of Mathematics Achievement, Placement, And Graduation Of Engineering Students, Sara Hahler Blazek

Doctoral Dissertations

The purpose of this study was to determine how background knowledge impacts freshmen engineering students' success at Louisiana Tech University in terms of grades in two different freshman classes and graduation. To determine what factors impact students, three different studies were implemented. The first study used linear regression to analyze which demographic and academic variables significantly impacted freshman math and engineering courses. Using regression discontinuity, the second study determined if the university's placement requirement for Pre-Calculus was appropriate. The final study analyzed factors that impact graduation for engineering students as well as other disciplines to determine which significant variables were …


Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, …


Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr. Apr 2016

Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr.

Doctoral Dissertations

The National Cancer Institute and the American Cancer Society estimate that 1.6 million new cancer incidences and over half a million cancer related deaths occur annually [1][2]. Cancer the second most common cause of death in the United States [1], [2]. Although the causes of cancer can vary depending on cell type, all or almost all instances of cancer arise from a mutation or from an abnormal activation of the cellular genes that control cell growth and mitosis [3].

Treatment of a given cancer type depends on the subtype, stage and progression of the cancer. Varieties of cancer therapy include …


Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu Apr 2012

Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu

Doctoral Dissertations

Nanopulses are ultra-wide-band (UWB) electromagnetic pulses with pulse duration of only a few nanoseconds and electric field amplitudes greater than 105 V/m. They have been widely used in the development of new technologies in the field of medicine. Therefore, the study of the nanopulse bioeffects is important to ensure the appropriate application with nanopulses in biomedical and biotechnological settings. The conventional finite-difference time-domain (FDTD) method for solving Maxwell's equations has been proven to be an effective method to solve the problems related to electromagnetism. However, its application is restricted by the Courant, Friedrichs, and Lewy (CFL) stability condition that confines …


Computational Studies Of Ion Transport In Polymer Electrolytes, Hui Wu Oct 2011

Computational Studies Of Ion Transport In Polymer Electrolytes, Hui Wu

Doctoral Dissertations

Improving ionic conductivity and lithium mobility in polymer electrolytes is important for their practical use for battery electrolytes. In this study, a combination of molecular dynamics and Monte Carlo simulations was used to bring insight into lithium ion transport in poly(ethylene oxide) (PEO) with plasticizers and also next to alumina solid surface doped with lithium salt. The simulations were performed using a moderately high molecular weight polymer (Mn = 10,000 g/mol) at an EO:Li ratio of 15. For the plasticized system, the PEO with LiN(CF3SO 2)2 (LiTFSI) was mixed with 10 wt% plasticizers that included either cyclic ethylene carbonate …


A Finite Difference Method For Studying Thermal Deformation In Three-Dimensional Thin Films Exposed To Ultrashort Pulsed Lasers, Suyang Zhang Jul 2008

A Finite Difference Method For Studying Thermal Deformation In Three-Dimensional Thin Films Exposed To Ultrashort Pulsed Lasers, Suyang Zhang

Doctoral Dissertations

Thermal analysis related to ultrashort-pulsed lasers has been intensely studied in science and engineering communities in recent years, because the pulse duration of ultrashort-pulsed lasers is only the order of sub-picoseconds to femtoseconds, and the lasers have exclusive capabilities in limiting the undesirable spread of the thermal process zone in the heated sample. Studying the thermal deformation induced by ultrashort-pulsed lasers is essential for preventing thermal damage. For the ultrashort-pulsed laser, the thermal damage is different from that caused by the long pulsed lasers and cracks occur after heating.

This dissertation presents a new finite difference method for studying thermal …


Nanodot-Based Organic Memory Devices, Zhengchun Liu Jan 2006

Nanodot-Based Organic Memory Devices, Zhengchun Liu

Doctoral Dissertations

In this study, resistor-type, diode-type, and transistor-type organic memory devices were investigated, aiming at the low-cost plastic integrated circuit applications. A series of solution-processing techniques including spin-coating, inkjet printing, and self-assembly were employed to fabricate these devices.

The organic resistive memory device is based on a novel molecular complex film composed of tetracyanoquinodimethane (TCNQ) and a soluble methanofullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM). It has an Al/molecules/Al sandwich structure. The molecular layer was formed by spin-coating technique instead of expensive vacuum deposition method. The current-voltage characteristics show that the device switches from the initial 'low' conduction state to …


A Numerical Method For Obtaining An Optimal Temperature Distribution In A 3d Triple-Layered Cylindrical Skin Structure, Le Zhang Apr 2005

A Numerical Method For Obtaining An Optimal Temperature Distribution In A 3d Triple-Layered Cylindrical Skin Structure, Le Zhang

Doctoral Dissertations

In recent years, it has been interesting to research hyperthermia combined with radiation and cytotoxic drugs to enhance the killing of tumors. The crucial problem is that when heating the tumor tissues, one needs to keep the surrounding normal tissue below a temperature that will produce harm. Thus, it is important to obtain the temperature field of the entire treatment region. The objective of this dissertation is to develop a numerical model for obtaining an optimal temperature distribution in a 3D triple-layered cylindrical skin structure. To this end, we pre-specify the temperatures to be obtained at the center and perimeter …


Computational Approaches To The Design And Analysis Of Stability Of Polypeptide Multilayer Thin Films, Bin Zheng Oct 2004

Computational Approaches To The Design And Analysis Of Stability Of Polypeptide Multilayer Thin Films, Bin Zheng

Doctoral Dissertations

The focus of this research is the development of computational approaches to understanding the physical basis of layer-by-layer assembly (LBL), a key methodology of nanomanufacturing. The results provided detailed information on structure which cannot be obtained directly by experiments.

The model systems chosen for study are polypeptide chains. Reasons for this are that polypeptides are no less polyelectrolytes than the more usual polyions, and one can control the primary structure of a polypeptide on a residue-by-residue basis using modern synthetic methods. Moreover, as peptides constitute one of the four major classes of biological macromolecules, research in this direction is expected …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Pattern Recognition For Electric Power System Protection, Yong Sheng Oct 2002

Pattern Recognition For Electric Power System Protection, Yong Sheng

Doctoral Dissertations

The objective of this research is to demonstrate pattern recognition tools such as decision trees (DTs) and neural networks that will improve and automate the design of relay protection functions in electric power systems. Protection functions that will benefit from the research include relay algorithms for high voltage transformer protection (TP) and for high impedance fault (HIF) detection. A methodology, which uses DTs and wavelet analysis to distinguish transformer internal faults from other conditions that are easily mistaken for internal faults, has been developed. Also, a DT based solution is proposed to discriminate HIFs from normal operations that may confuse …


Modeling And Experimental Verification Of Growth Of An Axisymmetric Cylindrical Rod By Three-Dimensional Laser-Induced Chemical Vapor Deposition, Qing Chen Apr 2002

Modeling And Experimental Verification Of Growth Of An Axisymmetric Cylindrical Rod By Three-Dimensional Laser-Induced Chemical Vapor Deposition, Qing Chen

Doctoral Dissertations

Three-dimensional laser-induced chemical vapor deposition (3D-LCVD) is a recently developed micro-manufacturing process that holds great potential for the production of complex microstructures with high aspect ratio. A laser beam is focused through a vacuum chamber window onto a movable substrate. The heat from the laser at or near the focal spot on the substrate induces the decomposition reaction of precursor gas in the chamber. As a result, solid-phase reaction products are deposited on the substrate to form the microstructure. In this dissertation, a numerical model is developed for simulating kinetically-limited growth of an axisymmetric cylindrical rod by pre-specifying the surface …


Statistical Properties Of Maximum Likelihood Estimates For Accelerated Lifetime Data Under The Weibull Model, Mahmoud A. Yousef Apr 2001

Statistical Properties Of Maximum Likelihood Estimates For Accelerated Lifetime Data Under The Weibull Model, Mahmoud A. Yousef

Doctoral Dissertations

Pipe rehabilitation liners are often installed in host pipes that lie below the water table. As such, they are subjected to external hydrostatic pressure. The external pressure leads to early deformation in the liners, which could ultimately lead to its failing or buckling before its expected service lifetime is achieved. Experiments involving long term buckling behavior of liners are typically accelerated lifetime testing procedures. In an accelerated testing procedure a liner is subjected to a constant external hydrostatic pressure and observed until it fails or for a certain time, t whichever occurs first. Liners that do not fail at time …


Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black Jul 2000

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black

Doctoral Dissertations

In this study free molecular flow in a micro-channel was modeled using a stochastic approach, namely the Kolmogorov forward equation in three dimensions. Model equations were discretized using Central Difference and Backward Difference methods and solved using the Jacobi method. Parameters were used that reflect the characteristic geometry of experimental work performed at the Louisiana Tech University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of the distance traveled by a particle in the micro-channel. From this distribution we obtained the distribution of the residence time of a particle in the micro-channel. Knowledge of …


A Hybrid Finite Element-Finite Difference Method For Thermal Analysis In A Double-Layered Thin Film, Teng Zhu Apr 2000

A Hybrid Finite Element-Finite Difference Method For Thermal Analysis In A Double-Layered Thin Film, Teng Zhu

Doctoral Dissertations

Thin film technology is of vital importance in microtechnology applications. For instance, thin films of metals, of dielectrics such as SiO2, or Si semiconductors are important components of microelectronic devices. The reduction of the device size to the microscale has the advantage of enhancing the switching speed of the device. The reduction, on the other hand, increases the rate of heat generation that leads to a high thermal load on the microdevice. Heat transfer at the microscale with an ultrafast pulsed-laser is also a very important process for thin films. Hence, studying the thermal behavior of thin films or of …