Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar Jan 2021

Multiscale Investigation Of Dropwise Condensation On A Smooth Hydrophilic Surface, Shahab Bayani Ahangar

Dissertations, Master's Theses and Master's Reports

The objective of this work is to identify the fundamental mechanism of dropwise condensation on a smooth solid surface by probing the solid-vapor interface during phase-change to evaluate the existence and structure of the thin film and the initial nucleus that develop during condensation. In this work, an automated Surface Plasmon Resonance imaging (SPRi) instrument with the ability to perform imaging in intensity modulation and angular modulation is developed. The SPRi instrument is used to probe (in three dimensions) the adsorbed film that forms on the substrate during dropwise condensation. SPRi with a lateral resolution of ~ 4-10 μm, thickness …


Predicting The Impacts Of Climate Change On The Great Lakes Water Levels Using A Fully Coupled 3d Regional Modeling System, Miraj Kayastha Jan 2021

Predicting The Impacts Of Climate Change On The Great Lakes Water Levels Using A Fully Coupled 3d Regional Modeling System, Miraj Kayastha

Dissertations, Master's Theses and Master's Reports

The Great Lakes of North America are the largest surface freshwater system in the world and many ecosystems, industries, and coastal processes are sensitive to the changes in their water levels. The recent changes in the Great Lakes climate and water levels have particularly highlighted the importance of water level prediction. The water levels of the Great Lakes are primarily governed by the net basin supplies (NBS) of each lake which are the sum of over-lake precipitation and basin runoff minus lake evaporation. Recent studies have utilized Regional Climate Models (RCMs) with a fully coupled one-dimensional (1D) lake model to …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


A Transdisciplinary Analysis Of Just Transition Pathways To 100% Renewable Electricity, Adewale Aremu Adesanya Jan 2021

A Transdisciplinary Analysis Of Just Transition Pathways To 100% Renewable Electricity, Adewale Aremu Adesanya

Dissertations, Master's Theses and Master's Reports

The transition to using clean, affordable, and reliable electrical energy is critical for enhancing human opportunities and capabilities. In the United States, many states and localities are engaging in this transition despite the lack of ambitious federal policy support. This research builds on the theoretical framework of the multilevel perspective (MLP) of sociotechnical transitions as well as the concept of energy justice to investigate potential pathways to 100 percent renewable energy (RE) for electricity provision in the U.S. This research seeks to answer the question: what are the technical, policy, and perceptual pathways, barriers, and opportunities for just transition to …


Advancement Of Full-Vector Variable-Temperature Magnetometry For Rock-Magnetic And Paleointensity Applications, Leonid Surovitskii Jan 2021

Advancement Of Full-Vector Variable-Temperature Magnetometry For Rock-Magnetic And Paleointensity Applications, Leonid Surovitskii

Dissertations, Master's Theses and Master's Reports

Data on the variation of the direction and strength of Earth’s ancient magnetic field (absolute paleointensity) provide crucial information into the mechanisms of the geodynamo and the Earth’s thermal history. However, the use of conventional methods and instrumentation for absolute paleointensity determination has been hampered by physicochemical alteration of the samples caused by multiple high-temperature cycles and long experiment durations. The reliability and efficiency of the measurement process can be improved by the measurement of the full remanent magnetization vector simultaneously with the temperature cycling of a sample. Such as approach can also substantially expand the scope of materials available …


Quantifying The Value Of Foam-Based Flexible Floating Solar Photovoltaic Systems, Koami Soulemane Hayibo Jan 2021

Quantifying The Value Of Foam-Based Flexible Floating Solar Photovoltaic Systems, Koami Soulemane Hayibo

Dissertations, Master's Theses and Master's Reports

Distributed generation with solar photovoltaic (PV) technology is economically competitive if net metered in the U.S. Yet there is evidence that net metering is misrepresenting the true value of distributed solar generation so that the value of solar (VOS) is becoming the preferred method for evaluating economics of grid-tied PV. VOS calculations are challenging and there is widespread disagreement in the literature on the methods and data needed. To overcome these limitations, this thesis reviews past VOS studies to develop a generalized model that considers realistic future avoided costs and liabilities. The approach used here is bottom-up modeling where the …


Impact Of Hemodynamic Vortex Spatial And Temporal Characteristics On Analysis Of Intracranial Aneurysms, Kevin W. Sunderland Jan 2021

Impact Of Hemodynamic Vortex Spatial And Temporal Characteristics On Analysis Of Intracranial Aneurysms, Kevin W. Sunderland

Dissertations, Master's Theses and Master's Reports

Subarachnoid hemorrhage is a potentially devastating pathological condition in which bleeding occurs into the space surrounding the brain. One of the prominent sources of subarachnoid hemorrhage are intracranial aneurysms (IA): degenerative, irregular expansions of area(s) of the cerebral vasculature. In the event of IA rupture, the resultant subarachnoid hemorrhage ends in patient mortality occurring in ~50% of cases, with survivors enduring significant neurological damage with physical or cognitive impairment. The seriousness of IA rupture drives a degree of clinical interest in understanding these conditions that promote both the development and possible rupture of the vascular malformations. Current metrics for the …


Superresolution Enhancement With Active Convolved Illumination, Anindya Ghoshroy Jan 2021

Superresolution Enhancement With Active Convolved Illumination, Anindya Ghoshroy

Dissertations, Master's Theses and Master's Reports

The first two decades of the 21st century witnessed the emergence of “metamaterials”. The prospect of unrestricted control over light-matter interactions was a major contributing factor leading to the realization of new technologies and advancement of existing ones. While the field certainly does not lack innovative applications, widespread commercial deployment may still be several decades away. Fabrication of sophisticated 3d micro and nano structures, specially for telecommunications and optical frequencies will require a significant advancement of current technologies. More importantly, the effects of absorption and scattering losses will require a robust solution since this renders any conceivable application of metamaterials …


Investigation Of A Machine-Plant Interface For Extracting Rooted Invasive Aquatic Plants, Brad Baas Jan 2021

Investigation Of A Machine-Plant Interface For Extracting Rooted Invasive Aquatic Plants, Brad Baas

Dissertations, Master's Theses and Master's Reports

The current solutions for managing rooted aquatic invasive plants are time consuming, have negative environmental impacts, or are cost-limiting for management organizations. The most effective treatment method is hand pulling, but hand pulling is not a feasible solution for a whole lake. A new device, the invasive aquatic plant extractor, aims to replace human divers who hand pull plants with a mechanical system. The device implements a machine-plant interface that resembles the tines of a fork. These tines will be pushed linearly through the substrate, and then raised from the substrate with the plant caught in the tines. The primary …


Light Field Compression And Manipulation Via Residual Convolutional Neural Network, Eisa Hedayati Jan 2021

Light Field Compression And Manipulation Via Residual Convolutional Neural Network, Eisa Hedayati

Dissertations, Master's Theses and Master's Reports

Light field (LF) imaging has gained significant attention due to its recent success in microscopy, 3-dimensional (3D) displaying and rendering, augmented and virtual reality usage. Postprocessing of LF enables us to extract more information from a scene compared to traditional cameras. However, the use of LF is still a research novelty because of the current limitations in capturing high-resolution LF in all of its four dimensions. While researchers are actively improving methods of capturing high-resolution LF's, using simulation, it is possible to explore a high-quality captured LF's properties. The immediate concerns following the LF capture are its storage and processing …


Mapping Michigan's Historic Coastlines, Ryan A. Williams Jan 2021

Mapping Michigan's Historic Coastlines, Ryan A. Williams

Dissertations, Master's Theses and Master's Reports

This five-year project, sponsored by the Michigan Department of Environment, Great Lakes, and Energy, is working to map how Michigan’s Great Lakes shorelines have changed over the past 80+ years. Products of this project include publicly available digital, georeferenced, historic aerial photography datasets, as well as map layers depicting the locations of historic shorelines and bluff lines from 1938, 1980, 2009, 2016, 2018, and 2020. Additional products include bluff retreat risk areas, shoreline rate of change map layers, and tools to assist in the development of future Coastal Vulnerability Index projects for the Great Lakes. All products are available as …