Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Australian Institute for Innovative Materials - Papers

Series

2018

Active-site-enriched

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets For Enhanced Oxygen Evolution Reaction, Qian Zhou, Yaping Chen, Guoqiang Zhao, Yue Lin, Zhenwei Yu, Xun Xu, Xiaolin Wang, Hua-Kun Liu, Wenping Sun, Shi Xue Dou Jan 2018

Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets For Enhanced Oxygen Evolution Reaction, Qian Zhou, Yaping Chen, Guoqiang Zhao, Yue Lin, Zhenwei Yu, Xun Xu, Xiaolin Wang, Hua-Kun Liu, Wenping Sun, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Highly active, durable, and inexpensive nanostructured catalysts are crucial for achieving efficient and economical electrochemical water splitting. However, developing efficient approaches to further improve the catalytic ability of the well-defined nanostructured catalysts is still a big challenge. Herein, we report a facile and universal cation-exchange process for synthesizing Fe-doped Ni(OH)2 and Co(OH)2 nanosheets with enriched active sites toward enhanced oxygen evolution reaction (OER). In comparison with typical NiFe layered double hydroxide (LDH) nanosteets prepared by the conventional one-pot method, Fe-doped Ni(OH)2 nanosheets evolving from Ni(OH)2 via an Fe3+/Ni2+ cation-exchange process possess nanoporous surfaces with abundant defects. Accordingly, Fe-doped Ni(OH)2 nanosheets …