Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Wayne State University

Theses/Dissertations

Atomic Layer Deposition

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

New Chemistry For The Growth Of First-Row Transition Metal Films By Atomic Layer Deposition, Joseph Peter Klesko Jan 2016

New Chemistry For The Growth Of First-Row Transition Metal Films By Atomic Layer Deposition, Joseph Peter Klesko

Wayne State University Dissertations

Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the …


Precursors And Processes For The Growth Of Metallic First Row Transition Metal Films By Atomic Layer Deposition, Lakmal Charidu Kalutarage Jan 2014

Precursors And Processes For The Growth Of Metallic First Row Transition Metal Films By Atomic Layer Deposition, Lakmal Charidu Kalutarage

Wayne State University Dissertations

As a result of the continuous miniaturization of microelectronics devices, atomic layer deposition (ALD) has gained much attention in the recent years. ALD allows the deposition of ultra-thin conformal films with accurate thickness control due to the self-limiting growth mechanism. The microelectronics industry requires the growth of metallic first row transition metal films by ALD. Due to the positive electrochemical potentials, the ALD growth of noble metal thin films has been well developed in the past. By contrast, the ALD growth of first row transition metal films remains poorly documented. The reasons for this scarcity include the lack of suitable …