Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Dipolar Coupling Based Strategy For Simultaneous Resonance Assignment And Structure Determination Of Protein Backbones, Fang Tian, Homayoun Valafar, James H. Prestegard Nov 2001

A Dipolar Coupling Based Strategy For Simultaneous Resonance Assignment And Structure Determination Of Protein Backbones, Fang Tian, Homayoun Valafar, James H. Prestegard

Faculty Publications

A new approach for simultaneous protein backbone resonance assignment and structure determination by NMR is introduced. This approach relies on recent advances in high-resolution NMR spectroscopy that allow observation of anisotropic interactions, such as dipolar couplings, from proteins partially aligned in field ordered media. Residual dipolar couplings are used for both geometric information and a filter in the assembly of residues in a sequential manner. Experimental data were collected in less than one week on a small redox protein, rubredoxin, that was 15N enriched but not enriched above 1% natural abundance in 13C. Given the acceleration possible with partial 13C …


Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy Mar 2001

Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy

Faculty Publications

Room temperature, continuous-wave bistability was observed in oxide-confined, two-section, 1.3- m quantum-dot (QD) lasers with an integrated intracavity quantum-dot saturable absorber. The origin of the hysteresis and bistability were shown to be due to the nonlinear saturation of the QD absorption and the electroabsorption induced by the quantum confined Stark effect.