Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Spin And Charge Transport In Metallic Ferrimagnets And Disordered Magnetic Oxides, Leopoldo A. Hernandez Jun 2024

Spin And Charge Transport In Metallic Ferrimagnets And Disordered Magnetic Oxides, Leopoldo A. Hernandez

Electronic Theses and Dissertations

Recent efforts have been exploring the use of thin film synthetic ferrimagnets and disordered magnetic oxides for applications in spintronic devices. Due to the antiferromagnetic exchange interaction, ferrimagnetic materials offer the ultrafast dynamics of the antiferromagnetic exchange, with a net magnetization that can be influenced externally. With two, or more, competing ferromagnet sublattices, interesting properties arise that depend on the final magnetic landscape after growth of the material and it’s inherent magnetic anisotropy energies. Properties such as magnetic compensation temperatures, and perpendicular magnetic anisotropy are attractive for applications in spintronic memory and logic devices, some already being implemented in MRAM …


Statistical Modeling Of Knee Morphology And Material Properties Considering Diverse Populations, Gabrielle Jeannine Kindy Jun 2024

Statistical Modeling Of Knee Morphology And Material Properties Considering Diverse Populations, Gabrielle Jeannine Kindy

Electronic Theses and Dissertations

Total Knee Arthroplasty (TKA) is a widely performed surgical procedure aimed at alleviating pain and restoring function in patients with severe knee osteoarthritis. Despite its general success, disparities in postoperative outcomes have been observed across different racial and ethnic groups, with minority populations often experiencing less favorable results. One potential avenue for improving the generalizability of orthopaedic implants is using Statistical Shape and Intensity Models (SSIMs), which can be used to incorporate patient variability directly into the orthopaedic medical device development workflow through population-based finite element analysis.

This work aimed to construct an SSIM from a diverse subject set, incorporating …


The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale Mar 2024

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …