Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva Dec 2018

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis proposes a light-weight, compact, and accurate optical micro-seismometer that could be used in many applications, such as planetary exploration. The sensor proposed here is based on the principle of whispering gallery optical mode (WGM) resonance shifts of a dielectric micro-resonator due to disturbances of its evanescent field. The micro-seismometer could be used in place of the traditional bulky seismometers. The design of a waveguide-resonator and mechanical structure to disturb the evanescent field are presented. A proof-of-concept a seismometer model that uses a 5µm ring resonator is numerically tested with actual seismic data. The results show that a WGM-based …


Indirect Imaging Using Computational Imaging Techniques, Aparna Viswanath Oct 2018

Indirect Imaging Using Computational Imaging Techniques, Aparna Viswanath

Electrical Engineering Theses and Dissertations

The work describes various methods employed towards solving the problem of indirect imaging. Computational techniques are employed to indirectly decipher information about an object hidden from view of a camera. Notion of virtualizing the source of illumination and detectors on real world rough surfaces was exploited to construct a non line of sight computational imager. Diversity was explored from the stand point of both illumination of the object and imaging of light reflected from the object. To understand the impact of scattering by real world rough surfaces, an instrument was developed that allows characterization of isoplanatic angle for different surface …


Yelp’S Review Filtering Algorithm, Yao Yao, Ivelin Angelov, Jack Rasmus-Vorrath, Mooyoung Lee, Daniel W. Engels Aug 2018

Yelp’S Review Filtering Algorithm, Yao Yao, Ivelin Angelov, Jack Rasmus-Vorrath, Mooyoung Lee, Daniel W. Engels

SMU Data Science Review

In this paper, we present an analysis of features influencing Yelp's proprietary review filtering algorithm. Classifying or misclassifying reviews as recommended or non-recommended affects average ratings, consumer decisions, and ultimately, business revenue. Our analysis involves systematically sampling and scraping Yelp restaurant reviews. Features are extracted from review metadata and engineered from metrics and scores generated using text classifiers and sentiment analysis. The coefficients of a multivariate logistic regression model were interpreted as quantifications of the relative importance of features in classifying reviews as recommended or non-recommended. The model classified review recommendations with an accuracy of 78%. We found that reviews …


Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman Jul 2018

Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman

SMU Data Science Review

In this paper, we present an analysis of flight data in order to determine whether the application of the Edge Aerodynamix Conformal Vortex Generator (CVG), applied to the wings of aircraft, reduces fuel flow during cruising conditions of flight. The CVG is a special treatment and film applied to the wings of an aircraft to protect the wings and reduce the non-laminar flow of air around the wings during flight. It is thought that by reducing the non-laminar flow or vortices around and directly behind the wings that an aircraft will move more smoothly through the air and provide a …


A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise May 2018

A Microresonator-Based Laser Doppler Velocity Sensor For Interplanetary Atmospheric Re-Entry, Benjamin Wise

Mechanical Engineering Research Theses and Dissertations

In this thesis, a laser velocity sensor concept based on optical microresonators is presented and the application to spacecraft atmospheric entry is explored. The concept is based on the measurement of Doppler shift of back-scattered laser light. Specifically, the Doppler shift is detected by observing the whispering gallery optical modes (WGM) of a dielectric microresonator excited by the back scattered light from particulates and gas molecules. The microresonator replaces the typical Fabry-Perot interferometer and CCD camera system, thereby significantly reducing the size and weight of the overall detection system. This thesis presents proof-of-concept results for this measurement approach. The Doppler …


Investigation Of The Effects Of Harmful Radiation On Type-Ii Strained Layer Superlattice Focal Plane Arrays Operated In The Long Wave Infrared, Patrick Fumo May 2018

Investigation Of The Effects Of Harmful Radiation On Type-Ii Strained Layer Superlattice Focal Plane Arrays Operated In The Long Wave Infrared, Patrick Fumo

Electrical Engineering Theses and Dissertations

In-situ exposure of InAs/InAsSb strained layer superlattice focal plane arrays to gamma-rays revealed the possibility of a detector capable of imaging through a total ionizing dose event. Two long wave infrared focal plane arrays were exposed to a Co60 source at dose rates of 60 Rads/s and 70 Rads/s in incremental steps up to a total accumulated dose of 30 kRads. The first device showed no degradation in dark current density with accumulated dose while the second device tested showed a small increase up to 1 kRad and minimal increases with subsequent dose steps. The primary imaging defect in …


Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels Apr 2018

Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels

SMU Data Science Review

In this paper, we present a comparative evaluation of deep learning approaches to network intrusion detection. A Network Intrusion Detection System (NIDS) is a critical component of every Internet connected system due to likely attacks from both external and internal sources. A NIDS is used to detect network born attacks such as Denial of Service (DoS) attacks, malware replication, and intruders that are operating within the system. Multiple deep learning approaches have been proposed for intrusion detection systems. We evaluate three models, a vanilla deep neural net (DNN), self-taught learning (STL) approach, and Recurrent Neural Network (RNN) based Long Short …


Comparative Study: Reducing Cost To Manage Accessibility With Existing Data, Claire Chu, Bill Kerneckel, Eric C. Larson, Nathan Mowat, Christopher Woodard Apr 2018

Comparative Study: Reducing Cost To Manage Accessibility With Existing Data, Claire Chu, Bill Kerneckel, Eric C. Larson, Nathan Mowat, Christopher Woodard

SMU Data Science Review

“Project Sidewalk” is an existing research effort that focuses on mapping accessibility issues for handicapped persons to efficiently plan wheelchair and mobile scooter friendly routes around Washington D.C. As supporters of this project, we utilized the data “Project Sidewalk” collected and used it to confirm predictions about where problem sidewalks exist based on real estate and crime data. We present a study that identifies correlations found between accessibility data and crime and housing statistics in the Washington D.C. metropolitan area. We identify the key reasons for increased accessibility and the issues with the current infrastructure management system. After a thorough …


Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni Apr 2018

Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni

Mechanical Engineering Research Theses and Dissertations

Optimal control is a control method which provides inputs that minimize a performance index subject to state or input constraints [58]. The existing solutions for finding the exact optimal control solution such as Pontryagin’s minimum principle and dynamic programming suffer from curse of dimensionality in high order dynamical systems. One remedy for this problem is finding near optimal solution instead of the exact optimal solution to avoid curse of dimensionality [31]. A method for finding the approximate optimal solution is through Approximate Dynamic Programming (ADP) methods which are discussed in the subsequent chapters.

In this dissertation, optimal switching in switched …


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations. …