Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Quantifying Total And Sustainable Agricultural Biomass Resources In South Dakota, Kurt A. Rosentrater, Russell Persyn, Dennis Todey Jun 2007

Quantifying Total And Sustainable Agricultural Biomass Resources In South Dakota, Kurt A. Rosentrater, Russell Persyn, Dennis Todey

Kurt A. Rosentrater

Conversion of biomass is considered the next major advance in biorenewable fuels, energy, and products. Wholesale conversion to biomass utilization could result in removal of current crop residues from agricultural fields or even implementation of different crops and cropping strategies (i.e., switchgrass). To date, the driver for biomass processing has been economics and limitations on the conversion of the lignocellulose. Over the last forty years significant investments and resultant changes in management practices in the agricultural sector have focused on soil and water conservation. One of the major efforts has focused on conservation-till or no-till, with the goal of retaining …


Compression Molding Of Phenolic Resin And Corn-Based Ddgs Blends, Kurt A. Rosentrater, R. A. Tatara, S. Suraparaju Apr 2007

Compression Molding Of Phenolic Resin And Corn-Based Ddgs Blends, Kurt A. Rosentrater, R. A. Tatara, S. Suraparaju

Kurt A. Rosentrater

With the rapid growth in the ethanol fuel industry in recent years, considerable research is being devoted to optimizing the use of processing coproducts, such as distillers dried grains with solubles (DDGS), in livestock diets. Because these residues contain high fiber levels, they may be amendable to incorporation into bio-based composites. Thus, the goal of this study was to demonstrate the viability of using corn-based DDGS as a biofiller with phenolic resin, in order to produce a novel biomaterial. DDGS was blended with phenolic resin at 0, 10, 25, 50, 75, and 90%, by weight, and then compression molded at …


Microbial Development In Distillers Wet Grains Produced During Fuel Ethanol Production From Corn (Zea Mays), R. Michael Lehman, Kurt A. Rosentrater Jan 2007

Microbial Development In Distillers Wet Grains Produced During Fuel Ethanol Production From Corn (Zea Mays), R. Michael Lehman, Kurt A. Rosentrater

Kurt A. Rosentrater

Distillers grains are coproduced with ethanol and carbon dioxide during the production of fuel ethanol from the dry milling and fermentation of corn grain, yet there is little basic microbiological information on these materials. We undertook a replicated field study of the microbiology of distillers wet grains (DWG) over a 9 day period following their production at an industrial fuel ethanol plant. Freshly produced DWG had a pH of about 4.4, a moisture content of about 53.5% (wet mass basis), and 4 x 10(5) total yeast cells/g dry mass, of which about 0.1% were viable. Total bacterial cells were initially …