Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

City University of New York (CUNY)

Dissertations, Theses, and Capstone Projects

Theses/Dissertations

Quantum Dots

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis Feb 2020

Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis

Dissertations, Theses, and Capstone Projects

In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. We have investigated the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots and the use of (Zn)CdTe/ZnCdSe QDs for intermediate band solar cell (IBSC). Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ~1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were also probed. A new growth sequence for type-II (Zn)CdTe/ZnCdSe (QDs) was …


Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy Oct 2014

Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy

Dissertations, Theses, and Capstone Projects

This thesis describes the design, fabrication and characterization of certain nanostructures to engineer light-matter interaction. These materials have peculiar dispersion properties owing to their structural design, which is exploited to control spontaneous emission properties of emitters such as quantum dots and dye molecules. We will discuss two classes of materials based on the size of their unit cell compared to the wavelength of the electromagnetic radiation they interact with. The first class are hyperbolic metamaterials (HMM) composed of alternate layers of a metal and a dielectric of thicknesses much smaller than the wave- length. Using a HMM composed of silver …