Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Water-Soluble Saponins Accumulate In Drought-Stressed Switchgrass And May Inhibit Yeast Growth During Bioethanol Production, Sarvada Hemant Chipkar, Katherine Smith, Elizabeth M. Whelan, Derek J. Debrauske, Annie Jen, Katherine A. Overmyer, Andrea Senyk, Larkin Hooker-Moericke, Marissa Gallmeyer, Joshua J. Coon, A. Daniel Jones, Trey K. Sato, Rebecca G. Ong Dec 2022

Water-Soluble Saponins Accumulate In Drought-Stressed Switchgrass And May Inhibit Yeast Growth During Bioethanol Production, Sarvada Hemant Chipkar, Katherine Smith, Elizabeth M. Whelan, Derek J. Debrauske, Annie Jen, Katherine A. Overmyer, Andrea Senyk, Larkin Hooker-Moericke, Marissa Gallmeyer, Joshua J. Coon, A. Daniel Jones, Trey K. Sato, Rebecca G. Ong

Michigan Tech Publications

Background: Developing economically viable pathways to produce renewable energy has become an important research theme in recent years. Lignocellulosic biomass is a promising feedstock that can be converted into second-generation biofuels and bioproducts. Global warming has adversely affected climate change causing many environmental changes that have impacted earth surface temperature and rainfall patterns. Recent research has shown that environmental growth conditions altered the composition of drought-stressed switchgrass and directly influenced the extent of biomass conversion to fuels by completely inhibiting yeast growth during fermentation. Our goal in this project was to find a way to overcome the microbial inhibition and …


A Smart Parallel Gripper Industrial Automation System For Measurement Of Gripped Work Piece Thickness, Erik Kocher, Chukwuemeka George Ochieze, Ahmat Oumar, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh Nov 2022

A Smart Parallel Gripper Industrial Automation System For Measurement Of Gripped Work Piece Thickness, Erik Kocher, Chukwuemeka George Ochieze, Ahmat Oumar, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh

Michigan Tech Publications

As part of the advanced programmable logic controllers (PLC) course at Michigan Tech, this class project is performed on a mechatronics system gifted by Donald Engineering, a Michigan-based supplier of industrial automation systems and components. This paper explores the functionality and ladder programming of the smart parallel gripper system to measure the width of components grasped with the gripper. In addition, details of the system’s components, operation, more advanced uses are discussed. On the automation line, this smart gripper can be used to measure the thickness of work pieces while handling them and classifying these as either acceptable, too large …


Gesture Controlled Collaborative Robot Arm And Lab Kit, Abel A. Reyes, Skylar Reinhardt, Tony Wise, Nathir Rawashdeh, Sidike Paheding Nov 2022

Gesture Controlled Collaborative Robot Arm And Lab Kit, Abel A. Reyes, Skylar Reinhardt, Tony Wise, Nathir Rawashdeh, Sidike Paheding

Michigan Tech Publications

In this paper, a mechatronics system was designed and implemented to include the subjects of artificial intelligence, control algorithms, robot servo motor control, and human-machine interface (HMI). The goal was to create an inexpensive, multi-functional robotics lab kit to promote students’ interest in STEM fields including computing and mechtronics. Industrial robotic systems have become vastly popular in manufacturing and other industries, and the demand for individuals with related skills is rapidly increasing. Robots can complete jobs that are dangerous, dull, or dirty for humans to perform. Recently, more and more collaborative robotic systems have been developed and implemented in the …


Mechatronics Bachelor Curriculum Development In Light Of Industry 4.0 Technology Needs: Contrasting Us And German University Curricula, Paniz Hazaveh, Aleksandr Sergeyev, Nathir Rawashdeh Nov 2022

Mechatronics Bachelor Curriculum Development In Light Of Industry 4.0 Technology Needs: Contrasting Us And German University Curricula, Paniz Hazaveh, Aleksandr Sergeyev, Nathir Rawashdeh

Michigan Tech Publications

This study compares Mechatronics bachelor curricula at universities in the United States of America and German universities. Mechatronics education is relatively new in the United States, but has been common in Germany for over a decade. With the multidisciplinary nature of technologies required by the 4’th industrial revolution, a.k.a. Industry 4.0, composing an appropriate Mechatronics curriculum becomes a challenge and an opportunity. This paper studies how Mechatronics education can address the future needs of industry, while building on a specific university’s strengths and industry links. We have also analyzed the new undergraduate Mechatronics program at Michigan Technological University (MTU) and …


Operation Of A Controllable Force-Sensing Industrial Pneumatic Parallel Gripper System, Brian Piechocki, Chelsey Spitzner, Namratha Karanam, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh Nov 2022

Operation Of A Controllable Force-Sensing Industrial Pneumatic Parallel Gripper System, Brian Piechocki, Chelsey Spitzner, Namratha Karanam, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh

Michigan Tech Publications

As part of the advanced programmable logic controllers (PLC) course at Michigan Tech, this class project was performed on a mechatronics system gifted by Donald Engineering, a Michigan-based supplier of industrial automation systems and components. This paper explores the functionality and application of a force-programmable and sensing pneumatic parallel gripper system. Force sensing is a critical part of many systems in modern automation systems. Applications such as prosthetics, robotic surgery, or basic manufacturing systems may rely on the ability to properly read and control forces applied to an object. This work evaluates the basic operation of the pneumatic force-sensing gripper …


An Industrial Pneumatic And Servo Four-Axis Robotic Gripper System: Description And Unitronics Ladder Logic Programming, Zongguang Liu, Chrispin Johnston, Aleksi Leino, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh Nov 2022

An Industrial Pneumatic And Servo Four-Axis Robotic Gripper System: Description And Unitronics Ladder Logic Programming, Zongguang Liu, Chrispin Johnston, Aleksi Leino, Travis Winter, Aleksandr Sergeyev, Mark Gauthier, Nathir Rawashdeh

Michigan Tech Publications

As part of the advanced programmable logic controllers (PLC) course at Michigan Tech, this class project is performed on a mechatronics system gifted by Donald Engineering, a Michigan-based supplier of industrial automation systems and components. This paper explores the functionality and ladder programming of a four-axis robot enclosed in a cage with one side guarded by an optical fence. The robot has pneumatically actuated X-Y linear motion and a pneumatic gripper. Furthermore, the Z-axis motion and gripper wrist rotation are controlled by servo motors. A human machine interface (HMI) is also present, and it allows for easy manipulation and programming …


The Missing Link Between Standing-And Traveling-Wave Resonators, Qi Zhong, Haoqi Zhao, Liang Feng, Kurt Busch, Sahin K. Özdemir, Ramy El-Ganainy Aug 2022

The Missing Link Between Standing-And Traveling-Wave Resonators, Qi Zhong, Haoqi Zhao, Liang Feng, Kurt Busch, Sahin K. Özdemir, Ramy El-Ganainy

Michigan Tech Publications

Optical resonators are structures that utilize wave interference and feedback to confine light in all three dimensions. Depending on the feedback mechanism, resonators can support either standing-or traveling-wave modes. Over the years, the distinction between these two different types of modes has become so prevalent that nowadays it is one of the main characteristics for classifying optical resonators. Here, we show that an intermediate link between these two rather different groups exists. In particular, we introduce a new class of photonic resonators that supports a hybrid optical mode, i.e. at one location along the resonator the electromagnetic fields associated with …


An Algorithm For Task Allocation And Planning For A Heterogeneous Multi-Robot System To Minimize The Last Task Completion Time, Abhishek Patil, Jungyun Bae, Myoungkuk Park Jul 2022

An Algorithm For Task Allocation And Planning For A Heterogeneous Multi-Robot System To Minimize The Last Task Completion Time, Abhishek Patil, Jungyun Bae, Myoungkuk Park

Michigan Tech Publications

This paper proposes an algorithm that provides operational strategies for multiple heterogeneous mobile robot systems utilized in many real-world applications, such as deliveries, surveillance, search and rescue, monitoring, and transportation. Specifically, the authors focus on developing an algorithm that solves a min-max multiple depot heterogeneous asymmetric traveling salesperson problem (MDHATSP). The algorithm is designed based on a primal-dual technique to operate given multiple heterogeneous robots located at distinctive depots by finding a tour for each robot such that all the given targets are visited by at least one robot while minimizing the last task completion time. Building on existing work, …


Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang May 2022

Integrating Deep Learning And Hydrodynamic Modeling To Improve The Great Lakes Forecast, Pengfei Xue, Aditya Wagh, Gangfeng Ma, Yilin Wang, Yongchao Yang, Tao Liu, Chenfu Huang

Michigan Tech Publications

The Laurentian Great Lakes, one of the world’s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, …


Fidget Spinner Generator System For Mi-Star Unit 7.1, Douglas Oppliger Jan 2022

Fidget Spinner Generator System For Mi-Star Unit 7.1, Douglas Oppliger

Mi-STAR

This simple system is an integral and important part of this unit. It allows students to see, feel, and experience how kinetic energy can be transformed to another kind of energy. It is an effective learning tool in the unit because it is reasonably easy to make, has just a few simple and visible components, and reliably transforms enough energy to light an LED (light emitting diode). The LED provides a satisfying light output which is easy to observe.


Design And Analysis Of Marangoni-Driven Robotic Surfers, Mitchel L. Timm Jan 2022

Design And Analysis Of Marangoni-Driven Robotic Surfers, Mitchel L. Timm

Dissertations, Master's Theses and Master's Reports

We designed and experimentally studied the dynamics of two robotic systems that surf along the water-air interface. The robots were self-propelled by means of creating and maintaining a surface tension gradient resulting from an asymmetric release of isopropyl alcohol (IPA). The imbalance in the distribution of surface tension surrounding the robots generates a propulsive force commonly referred to as Marangoni propulsion. First, we considered a single surfer, which was custom-made with novel control mechanisms that allow for both forward motion and steering to be remotely adjusted solely through the manipulation of local surface stresses. We analyzed the performance of this …


Collective Hydrodynamics Of Robotic Fish, Rohit S. Pandhare Jan 2022

Collective Hydrodynamics Of Robotic Fish, Rohit S. Pandhare

Dissertations, Master's Theses and Master's Reports

Many animals in nature travel in groups either for protection, survival, or endurance. Among these, fish do so under the burden of hydrodynamic loads, which incites questions as to the significance of the multi-body fluid-mediated interactions that facilitate collective swimming. We study such interactions in the idealized setting of a rotational array of robotic fish whose tails undergo a prescribed flapping motion, but whose swimming speed is determined as a natural result of the hydrodynamic effects. Specifically, we examine how the measured collective speed of the swimmers varies with the imposed frequency and amplitude of their tail flapping, and with …


The Photo-Transformation Of Free Methionine In The Presence Of Surrogate And Standard Isolate Dissolved Organic Matter Under Sunlit Irradiation, Benjamin J. Mohrhardt Jan 2022

The Photo-Transformation Of Free Methionine In The Presence Of Surrogate And Standard Isolate Dissolved Organic Matter Under Sunlit Irradiation, Benjamin J. Mohrhardt

Dissertations, Master's Theses and Master's Reports

Sulfur (S)-containing amino acids are key sources of carbon, nitrogen, and sulfur involved in protein synthesis, protein function, and providing energy for microbial growth. Dissolved free and combined methionine is one of two S-containing amino acids incorporated into proteins and has been attributed to their stability and function. The oxidation of methionine has received considerable attention given its ubiquitous presence in most biological systems and has been associated with losses in protein function and pathological disorders. In natural waters, methionine is rapidly and selectively taken up by microorganisms to achieve cellular requirements of carbon, nitrogen, and sulfur. The abiotic transformation …


Image-Data-Driven Deep Learning For Slope Stability Analysis, Behnam Azmoon Jan 2022

Image-Data-Driven Deep Learning For Slope Stability Analysis, Behnam Azmoon

Dissertations, Master's Theses and Master's Reports

Landslides cause major infrastructural issues, damage the environment, and cause socio-economic disruptions. Therefore, various slope stability analysis methods have been developed to evaluate the stability of slopes and the probability of their failure. This dissertation attempts to take advantage of the recent advancements in remote sensing and computer technology to implement a deep-learning-based landslide prediction method.

Considering the novelty of this approach, this dissertation leads with proof-of-concept studies to evaluate and establish the suitability of deep learning models for slope stability analysis. To achieve this, a simulated 2D dataset of slope images was created with different geometries and soil properties. …


Maximum Likelihood Estimator Method To Estimate Flaw Parameters For Different Glass Types, Nabhajit Goswami Jan 2022

Maximum Likelihood Estimator Method To Estimate Flaw Parameters For Different Glass Types, Nabhajit Goswami

Dissertations, Master's Theses and Master's Reports

Glass is commonly used in architectural applications, such as windows and in-fill panels and structural applications, such as beams and staircases. Despite the popularity of structural glass use in buildings, an engineering design standard to determine the required component or member strength for design loads does not exist. Glass is a brittle material that lacks a well-defined yield or ultimate stress, unlike ductile materials. The traditional engineering methods used to design a ductile material cannot be used to design a glass component. Glass fails in tension primarily due to the presence of microscopic flaws present on the surface that acts …


On-Ice Detection, Classification, Localization And Tracking Of Anthropogenic Acoustic Sources With Machine Learning, Steven J. Whitaker Jan 2022

On-Ice Detection, Classification, Localization And Tracking Of Anthropogenic Acoustic Sources With Machine Learning, Steven J. Whitaker

Dissertations, Master's Theses and Master's Reports

Arctic acoustics have been of concern in recent years for the US navy. First-year ice is now the prevalent factor in ice coverage in the Arctic, which changes the previously understood acoustic properties. Due to the ice melting each year, anthropogenic sources in the Arctic region are more common: military exercises, shipping, and tourism. For the navy, it is of interest to detect, classify, localize, and track these sources to have situational awareness of these surroundings. Because the sources are on-water or on-ice, acoustic radiation propagates at a longer distance and so acoustics are the method by which the sources …