Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Broadband Dielectric Spectroscopic Detection Of Aliphatic Alcohol Vapors With Surface-Mounted Hkust-1 Mofs As Sensing Media, Papa K. Amoah, Zeinab Mohammed Hassan, Rhonda R. Franklin, Helmut Baumgart, Engelbert Redel, Yaw S. Obeng Jan 2022

Broadband Dielectric Spectroscopic Detection Of Aliphatic Alcohol Vapors With Surface-Mounted Hkust-1 Mofs As Sensing Media, Papa K. Amoah, Zeinab Mohammed Hassan, Rhonda R. Franklin, Helmut Baumgart, Engelbert Redel, Yaw S. Obeng

Electrical & Computer Engineering Faculty Publications

We leveraged chemical-induced changes to microwave signal propagation characteristics (i.e., S-parameters) to characterize the detection of aliphatic alcohol (methanol, ethanol, and 2-propanol) vapors using TCNQ-doped HKUST-1 metal-organic-framework films as the sensing material, at temperatures under 100 °C. We show that the sensitivity of aliphatic alcohol detection depends on the oxidation potential of the analyte, and the impedance of the detection setup depends on the analyte-loading of the sensing medium. The microwaves-based detection technique can also afford new mechanistic insights into VOC detection, with surface-anchored metal-organic frameworks (SURMOFs), which is inaccessible with the traditional coulometric (i.e., resistance-based) measurements.


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …


Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2008

Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The nucleation and growth of indium on a vicinal Si (100) - (2×1) surface at high temperature by femtosecond pulsed laser deposition was investigated by in situ reflection high energy electron diffraction (RHEED). RHEED intensity relaxation was observed for the first ∼2 ML during the growth of In (4×3) by step flow. From the temperature dependence of the rate of relaxation, an activation energy of 1.4±0.2 eV of surface diffusion was determined. The results indicate that indium small clusters diffused to terrace step edges with a diffusion frequency constant of (1.0±0.1) × 1011 s-1. The RHEED specular …


Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2007

Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The growth of indium on a vicinal Si (100) - (2×1) surface at room temperature by femtosecond pulsed laser deposition (fsPLD) was investigated by in situ reflection high-energy electron diffraction (RHEED). Recovery of the RHEED intensity was observed between laser pulses and when the growth was terminated. The surface diffusion coefficient of deposited In on initial two-dimensional (2D) In- (2×1) layer was determined. As growth proceeds, three-dimensional In islands grew on the 2D In- (2×1) layer. The RHEED specular profile was analyzed during film growth, while the grown In islands were examined by ex situ atomic force microscopy. The full …


Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2006

Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled germanium quantum dots (QDs) were grown on Si(100)-(2×1) by pulsed laser deposition. In situ reflection-high energy electron diffraction (RHEED) and postdeposition atomic force microscopy are used to study the growth of the QDs. Several films of different thicknesses were grown at a substrate temperature of 400 °C using a Q-switched Nd:yttrium aluminum garnet laser (λ= 1064 nm, 40 ns pulse width, 23 J/cm 2 fluence, and 10 Hz repetition rate). At low film thicknesses, hut clusters that are faceted by different planes, depending on their height, are observed after the completion of the wetting layer. With increasing film thickness, …


Boron-Doped Homoepitaxial Diamond (100) Film Investigated By Scanning Tunneling Microscopy, Bing Xiao, Weihai Fu, Sacharia Albin, Jason Moulton, John Cooper Jan 2001

Boron-Doped Homoepitaxial Diamond (100) Film Investigated By Scanning Tunneling Microscopy, Bing Xiao, Weihai Fu, Sacharia Albin, Jason Moulton, John Cooper

Electrical & Computer Engineering Faculty Publications

Conducting epitaxial diamond films of high quality are essential for many diamond studies and diamond electronic device fabrication. We have grown boron-doped epitaxial diamond films on type Ila natural diamond (100) substrates by microwave plasma chemical vapor deposition. A gas mixture of H2/CH4 was used. Boron doping was done by placing solid sources of pure boron in the microwave plasma. Homoepitaxial films with atomic smoothness were achieved under the following growth conditions: substrate temperature 900 °C, gas pressure 40 Torr, and gas flow rates of H2/CH4 = 900/7.2 seem. The growth rate was 0.87 …