Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Maitreya Desalination, Riley Taft, Hudson Kispert, Brendan Dizon Dec 2023

Maitreya Desalination, Riley Taft, Hudson Kispert, Brendan Dizon

Mechanical Engineering

This document relays the design and manufacture of a dual power input Reverse Osmosis desalination unit. It's power sources are electric drive and human power via recumbent seated cycling. Fresh water outputs range from 4 - 7 GPH for human power inputs of 150 - 280 Watts depending on the selected gearing ratio from the derailleur.


Fluid Power Vehicle Challenge, Bryce Towne, Ethan Andrews, Carter Moore, Andrew Sobel Jan 2023

Fluid Power Vehicle Challenge, Bryce Towne, Ethan Andrews, Carter Moore, Andrew Sobel

Williams Honors College, Honors Research Projects

The Fluid Power Vehicle Challenge is a competition held by the National Fluid Power Association (NFPA) that challenges students to create a hydraulically powered vehicle to compete in four different races over two days. The vehicle has to be fully powered by hydraulics, with human power (such as pedaling) being used to move the hydraulic fluid. Electronics and pneumatics can be used to control the flow of the hydraulic oil. Vehicles also must have an energy storage device to take advantage of regenerative braking. The final competition was at the Norgren facility in Colorado from April 12th to April 14th. …


Bicycle Headset With Adjustable Spring Rate, Andrew W. Drees, Jonah Masumoto, Camden R.S. Boshart, Matthew B. Mounteer Jun 2021

Bicycle Headset With Adjustable Spring Rate, Andrew W. Drees, Jonah Masumoto, Camden R.S. Boshart, Matthew B. Mounteer

Mechanical Engineering

Fork flop can play an important role in the performance of a mountain bike. This phenomenon of fork flop is known as the tendency that the front wheel of a bike wants to flop over to one side when moving slowly. The fork flop experienced on a bicycle changes with the geometry of the bike, but our team sought to change the fork flop experienced through an adjustable internal spring design that attaches to the bicycle instead. From our research, we decided to utilize torsion springs as the method for mitigating fork flop. We also decided to use load cells …


Corgi: Compute Oriented Recumbent Generation Infrastructure, Christopher Allen Hunt Mar 2017

Corgi: Compute Oriented Recumbent Generation Infrastructure, Christopher Allen Hunt

Master's Theses

Creating a bicycle with a rideable geometry is more complicated than it may appear, with today’s mainstay designs having evolved through years of iteration. This slow evolution coupled with the bicycle’s intricate mechanical system has lead most builders to base their new geometries off of previous work rather than expand into new design spaces. This crutch can lead to slow bicycle iteration rates, often causing bicycles to all look about the same. To combat this, several bicycle design models have been created over the years, with each attempting to define a bicycle’s handling characteristics given its physical geometry. However, these …


Bike Lock Combining Strength And Flexibility, Zachary Uhrich Jan 2016

Bike Lock Combining Strength And Flexibility, Zachary Uhrich

All Undergraduate Projects

What can be done when someone is riding a bicycle in a large metropolitan area, and when they reach their destination they find that there either is no bike rack, or the rack is already full. For bikers who prefer the security of a standard U-lock, this means having to leave to find another rack elsewhere or leave your bike unlocked. This situation is the why there is a need for a bike lock which can combine the security of a U-lock, with the flexibility and size of a chain. This project solves the problem by using a hardened steel …


The University Of Akron Nfpa 2015/2016 Chainless Challenge, Andrew Tupta, Andrew Ball, Stefan Stamboldziev, Jordon Spence, Sean Catchpole Jan 2016

The University Of Akron Nfpa 2015/2016 Chainless Challenge, Andrew Tupta, Andrew Ball, Stefan Stamboldziev, Jordon Spence, Sean Catchpole

Williams Honors College, Honors Research Projects

Parker Hannifin has issued a challenge to student design teams of creating a Chainless bike using a hydraulic system. Each student design team will be assigned a technical advisor from the University. The project will be divided into two phases after the initial kickoff. The first phase will align with senior design course for motion control and hydraulics and will yield the student obtaining knowledge in hydraulics, including bio-degradable fluids, pneumatics, electromechanical systems, green technologies (sustainable energy) and controlling force and motion. Students will be provided data sheets, a list of in-stock Parker components and by the end of the …


Asme Human Powered Vehicle, Benjamin Knaus, Philip Basmadjian, Nick Supat Dec 2010

Asme Human Powered Vehicle, Benjamin Knaus, Philip Basmadjian, Nick Supat

Mechanical Engineering

Speed Solutions has been contracted to design and build a Human Powered Vehicle (HPV) frame and drivetrain for the Cal Poly HPV club to use in their 2011 race season. This project is being funded by the Cal Poly HPV club and their sponsors. The goal is to design, test and build a bicycle frame that the HPV club can attach to a fairing of their design. Primary design considerations will include speed, weight, cost, rider ergonomics, reliability and ease of repair. This vehicle will be used to compete in ASME’s Human Powered Vehicle Challenge (HPVC) series of races.