Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Improving Sizing Resolution Of Particle Impactors In The Nanoparticle Range, Shivuday Kala Dec 2023

Improving Sizing Resolution Of Particle Impactors In The Nanoparticle Range, Shivuday Kala

All Dissertations

The application of particle size measurement extends across many fields: air quality measurement, pharmaceutical studies, paint and coating production, and nanoparticle formulation to name a few. Therefore, accurate measurement of nanoparticles is critical to aerosol science. While devices currently exist that can size and count nanoparticles such as electrical mobility spectrometers, dynamic light scattering devices, and small angle X-ray scattering devices, their high costs, complex operation, and lack of outdoor usability, restrict their use in practical applications. Among the devices that can size aerosols down to the nanoscale, cascade impactors stand out because of their robustness, relatively simple design, low …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Extensional Flows Of Polymer Solutions In Planar Microchannels, Mahmud Kamal Raihan Aug 2023

Extensional Flows Of Polymer Solutions In Planar Microchannels, Mahmud Kamal Raihan

All Dissertations

Non-Newtonian fluids such as polymer solutions often flow under microscale extensional conditions in many natural and engineering flow fields such as in microfluidic chips, porous rocks, biological membranes and filters, printheads in additive manufacturing, etc. The changing cross sectional areas of the internal flow passages therein exert additional extension on the flow along with the shearing. Numerous studies have been dedicated to understanding the extensional flows of polymer solutions over the years. However, most of these studies only focused on flexible polymers exhibiting elasticity in their macroscopic rheology, whereas rigid polymers that portray shear-thinning but often elude elasticity in the …


Investigation Of Fatigue Response With Analytical And Machine Learning Models And Hygroscopic Analysis Of Asymmetric Bistable Cfrp Composites, Shoab Ahmed Chowdhury Aug 2023

Investigation Of Fatigue Response With Analytical And Machine Learning Models And Hygroscopic Analysis Of Asymmetric Bistable Cfrp Composites, Shoab Ahmed Chowdhury

All Dissertations

Asymmetric bistable carbon fibre reinforced plastic (CFRP) composites enable a broad range of applications as they can sustain multiple stable configurations and have small snap-through load requirements. These unique features, coupled with their light strength-to-weight and stiffness-to-weight ratios, have made them preferred options for multifunctional systems. This study investigates the fatigue and hygroscopic response of 2-ply, [0/90] bistable CFRP laminates and proposes predictive modeling approaches for improved performance.

While previous studies widely researched and documented the fatigue of general composites in axial loading, fatigue analysis of asymmetric bistable composites in the out-of-plane snap-through direction is inadequate. This study performs fatigue …


Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel Aug 2023

Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel

All Theses

Fog-and-tube scrubbers are employed to remove harmful ultrafine aerosols, such as Diesel particulate matter (DPM), from an airflow. The underlying principle of this removal process involves enlarging the aerosol particles by coagulating them with fog drops, which are subsequently eliminated through inertial impaction onto the tube wall. Previous research conducted by Tabor et al. (2021) demonstrated an increase in scavenging of ultrafine DPM particles, ranging from 11.5 nm to 154 nm, by as large as 45% over the no fog case. This finding is crucial in addressing the challenges associated with conventional filtration methods for capturing ultrafine particles.

The present …


The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox May 2023

The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox

All Theses

Having a controlled environment to measure atmospheric turbulence is essential to understanding its effects on different laser beam characteristics. The Clemson Variable Turbulence Generator (VTG) has the capability to propagate a laser beam up to 100 m and be able to dial many turbulence settings up to a heat flux of 357 W/m2. A high-speed camera, power detector, and high-resolution temperature probes characterize the VTG with theoretical turbulence spectrums. The exponent associated with the Rayleigh-Bénard (RB) temperature structure constant equation is studied. Two different laser beam profiles are used throughout this work: Gaussian and Asymmetric Perfect Vortex (APV). …


Comparative Design Space For Bistable Composites: An Integrated Framework Of Optimization, Finite Element Analysis, And Experimental Testing, Jonathan Bolanos May 2023

Comparative Design Space For Bistable Composites: An Integrated Framework Of Optimization, Finite Element Analysis, And Experimental Testing, Jonathan Bolanos

All Theses

Bistable composites are a class of advanced materials that can actuate between two stable shapes, making them attractive for a wide range of engineering applications. However, designing these composites to achieve optimal performance remains a challenging task. To address the challenge, this research develops an integrated framework that combines a genetic algorithm optimization technique, finite element analysis in Abaqus, and experimental testing to explore the design comparative space for square bistable composites composed of DA 409 carbon fibers. This leads to the study of generating an optimization algorithm to account for the relationship between the chances of a successful maximum …