Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Application Of Laser Assisted Ultrasonic Nanocrystal Surface Modification On Aluminum And 3d Printed Titanium, Eman Hassan, Thomas Crouse Jan 2021

Application Of Laser Assisted Ultrasonic Nanocrystal Surface Modification On Aluminum And 3d Printed Titanium, Eman Hassan, Thomas Crouse

Williams Honors College, Honors Research Projects

A novel surface treatment, laser assisted ultrasonic nanocrystal surface modification (LA-UNSM), has proved effective in increasing surface hardness, and fatigue life. The objective of this research is to determine the effectiveness of this process on components created with additive manufacturing. To accomplish this, we investigated the effectiveness of LA-UNSM treatment on aluminum, a common 3d printed metal, and the effectiveness of LA-UNSM processing on 3d printed titanium. We first conducted our own literature review to assess the practicality of using this same treatment on aluminum. We then treated traditionally manufactured aluminum at varying levels of laser intensity to determine if …


Testing The Effectiveness Of Various Fabrics For Use In Protective Face Coverings, Isaac Daley Jan 2021

Testing The Effectiveness Of Various Fabrics For Use In Protective Face Coverings, Isaac Daley

Williams Honors College, Honors Research Projects

Facemask requirements have been heavily implemented as a result of the COVID-19 pandemic. The purpose of this study was to test various fabrics that could be used in face coverings and determine which materials are best for reducing virus transmission rates. Of the seven fabrics tested, five were conventional home-use fabrics and the other two were surfaces modified with hydrophobic organosilanes. Wettability and droplet adherence tests were performed on each material. The materials that performed the best were decyltrichlorosilane (DTS) modified cotton, perfluorotrichlorosilane (FTS) modified cotton, and polyester. Contact angles for water droplets on these fabrics were 106°, 93°, and …


Pulse Reverse Current Electrodeposited Tio2 Doped Ni-W Coating, Sydney Hughes Jan 2021

Pulse Reverse Current Electrodeposited Tio2 Doped Ni-W Coating, Sydney Hughes

Williams Honors College, Honors Research Projects

Nickel-Tungsten (Ni-W) coatings via the pulse reverse current method have been under development as a potential replacement for typical Chromium/Cadmium coatings. To increase the effectiveness of Ni-W as a coating, dopants have been tested to decrease microcracks and pores and increase overall tribological performance. Previous research by Timken Engineered Surfaces Laboratory showed that Ni-W doped with TiO2 nanoparticles had a positive effect on coating performance. The purpose of this study was to determine the ideal solution parameters (i.e. TiO2 concentration, pH) to maximize the benefit of the dopant when samples are subjected to tribological testing. Here, solutions of …


Increasing The Corrosion Protection Of Aisi 1008 Carbon Steel By Surface Treatment With Unmodified And Benzotriazole Modified Sol-Gel Films, Shane Thomas Kelliher Jan 2021

Increasing The Corrosion Protection Of Aisi 1008 Carbon Steel By Surface Treatment With Unmodified And Benzotriazole Modified Sol-Gel Films, Shane Thomas Kelliher

Williams Honors College, Honors Research Projects

The corrosion performance of sol-gel coated AISI 1008 carbon steel was investigated in 3.5 wt% NaCl solutions of pH 7, 9, and 12 using electrochemical measurements. A corrosion inhibitor, benzotriazole (BTA) was added to the sol-gel mixture and tested as a second, modified sol-gel coating. Sol-gel films adhered evenly to metal samples and were characterized by FTIR spectroscopy. Electrochemical Impedance Spectroscopy (EIS) showed an increase in polarization resistance from blank to sol-gel coated samples (600-18,800,000 ohms). Cyclic polarization (CPP) curves showed positive hysteresis loops for blank and unmodified sol-gel coated samples which increased at high pH following the backward potential …


Tabletop Dome Tester, Dylan Davis Jan 2021

Tabletop Dome Tester, Dylan Davis

Williams Honors College, Honors Research Projects

The project for the dome tester stand is a continuation from a group of four that worked on the stand in Spring of 2020. The project itself is based around the Erichsen Cupping test to test the material properties, in our application specifically, observing the forming limits of strain in deep drawing applications of sheet metal. Testing pieces in varying lengths from 4” x 4” squares to 4” x 0.5” strips to the depth that necking begins on the piece to determine the limit before cracks appear using a hemispherical punch to draw the material sample clamped between two dies. …


Atmospheric Corrosion Of Galvanically Coupled Aluminum Alloys And Carbon Steel, Mitchell Felde Jan 2021

Atmospheric Corrosion Of Galvanically Coupled Aluminum Alloys And Carbon Steel, Mitchell Felde

Williams Honors College, Honors Research Projects

Aluminum alloys are a steadily growing material being commonly used in lieu of typical steels. Additional alloying, heat treatment, and other property enhancing processes are expanding the use of these alloys. However, with this expansion, galvanic corrosion is becoming more of an issue in the design stage due to the combination of these alloys with steels. The automotive industry is one industry where the use of aluminum alloys is becoming common practice. Aluminum alloys provide a lightweight aspect over the conventional carbon steel that was used previously. As a result of this transition towards more lightweight materials, galvanic coupling is …