Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch Jan 2015

Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch

Williams Honors College, Honors Research Projects

No abstract provided.


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …


High-Fidelity Low-Thrust Trajectory Determination Research And Analysis, Tyler Hill Jun 2012

High-Fidelity Low-Thrust Trajectory Determination Research And Analysis, Tyler Hill

Aerospace Engineering

This document discusses a numerical analysis method for low thrust trajectory propagation known as the proximity quotient or Q-Law. The process uses a Lyapunov feedback control law developed by Petropoulos[1] to propagate trajectories of spacecraft by minimizing the user defined function at the target orbit. A simplified propagator is created from the core mechanics of this method in MATLAB and tested in several user defined cases to demonstrate its capabilities. Several anomalies arose in test cases where variations in eccentricity, inclination, right ascension of the ascending node, and argument of perigee were specified. Solutions to these anomalies are discussed …


Smore Phase 2: An Upgrade In Valve Systems & Startup Procedure For A Small Methanol Oxygen Liquid Rocket Engine, Christian Soria Mar 2010

Smore Phase 2: An Upgrade In Valve Systems & Startup Procedure For A Small Methanol Oxygen Liquid Rocket Engine, Christian Soria

Aerospace Engineering

A Methanol-Oxygen liquid rocket engine was designed and manufactured under the California Polytechnic State University Aerospace Department by students in a graduate level rocket propulsion class. The SMORE, previously known as the KORE, is now in an ongoing testing and developing stage with plans to incorporate it into the aerospace undergraduate propulsion lab. Phase 2 of the liquid rocket engine development is to produce a start-up procedure that will improve the safety due to manual operation and poor ignition conditions. A propane ignition system along with the implementation of electrically operated solenoid valves to control the fuels and oxidizer were …