Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Aerospace Engineering

Selected Works

Open Orbiter Project

Publication Year

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Open Prototype For Educational Nanosats Cubesat Structural Design, Benjamin Kading, Jeremy Straub, Ronald Marsh Mar 2015

Open Prototype For Educational Nanosats Cubesat Structural Design, Benjamin Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSats are a class of small satellites that have recently gained significant interest and are being developed and used for engineering test missions, bona fide research and various other applications. A 1-U CubeSat (the original form factor) has nominal dimensions of 10 cm x 10 cm x 10 cm and a mass of no more than 1.33 kg (however, some integrators are now consistently allowing higher mass levels). Due to their small size and the demonstrated ability to successfully use consumer-grade electronics in low-Earth orbit, CubeSats cost significantly less than larger sized satellites. These reduced costs, however, are still beyond …


A Two-Phase Development And Validation Plan For North Dakota's First Spacecraft, Jeremy Straub, Ronald Marsh Aug 2014

A Two-Phase Development And Validation Plan For North Dakota's First Spacecraft, Jeremy Straub, Ronald Marsh

Jeremy Straub

The Open Prototype for Educational NanoSats (OPEN) aims to make space more accessible for educational and other uses by driving down the cost of CubeSat development. This paper presents a tentative plan for the use of two orbital missions as part of a two-phase technology demonstration sequence focusing on raising the technology readiness level (TRL) of OPEN to a level suitable for wide use and adoption. It presents an overview of a two-mission development plan including mission objectives, requirements and constraints. The paper considers how the phase one mission’s spacecraft may serve as a lower-cost platform for some users in …


Development Of A Ground Station For The Openorbiter Spacecraft, Jacob Huhn, Alexander Lewis, Christoffer Korvald, Jeremy Straub, Scott Kerlin Apr 2014

Development Of A Ground Station For The Openorbiter Spacecraft, Jacob Huhn, Alexander Lewis, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative[1] at the University of North Dakota is working to design and build a low cost[2] and open-hardware / opensource software CubeSat[3]. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Mechanical Design And Analysis Of A 1-U Cubesat, Ben Kading, Jeremy Straub, Ronald Marsh Apr 2014

Mechanical Design And Analysis Of A 1-U Cubesat, Ben Kading, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft De-velopment Initiative seeks to create a low-cost, easy-to-assemble CubeSat1 design that can be produced with a parts budget of under USD$5,0002. In [1], an initial design was presented; this design was enhanced in [3] and has been revised further. The current design, which has switched focus from defining specifications, requirements and constraints to identifying real parts which meet these previously defined constraints, is presented herein.


Advancement Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian, Ronald Marsh Apr 2014

Advancement Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian, Ronald Marsh

Jeremy Straub

Software Defined Radios (SDRs) are an exciting development in radio technology. The SDR uses software to perform many of the tasks that only hardware could previously complete on a traditional analog radio. Such tasks include encoding/decoding or applying filters to reduce noise on the signal. This powerful fusion of software and hardware have allowed SDR to be smaller in size and have a greater functionality than traditional radio setups; a perfect solution for our Open Orbiter satellite. Currently, the implementation we use consists of a simple $20 USB TV decoder for receiving, a Raspberry Pi micro-computer for transmission, and the …


Interplanetary Hitchhiking To Support Small Spacecraft Missions Beyond Earth Orbit, Donovan Torgerson, Anders Nervold, Jeremy Straub, Josh Berk, Ronald Marsh, Scott Kerlin Sep 2013

Interplanetary Hitchhiking To Support Small Spacecraft Missions Beyond Earth Orbit, Donovan Torgerson, Anders Nervold, Jeremy Straub, Josh Berk, Ronald Marsh, Scott Kerlin

Jeremy Straub

The development of small spacecraft in educational institutions has traditionally been hampered by the high costs and integration complexities of launches. NASA’s Educational Launch of Nanosatellites program (ELaNa), kick started the concept of hitchhiking for free on a rocket launch to low-Earth or geostationary orbit. An ELaNa launch is typically provided by grouping multiple educational nanosatellites together in a rocket that is already carrying a larger and more expensive primary payload. In essence, providing the nanosats with a free hitchhike to space. The program promotes research and education by giving participants first-hand experience in spacecraft design and development.

Although the …


Open Beyond Orbit: Using The Designs From The Open Prototype For Educational Nanosats Outside Of Earth Orbit, Jeremy Straub Jun 2013

Open Beyond Orbit: Using The Designs From The Open Prototype For Educational Nanosats Outside Of Earth Orbit, Jeremy Straub

Jeremy Straub

This paper presents an overview of the Open Prototype for Educational NanoSats (OPEN) and its prospective use in interplanetary missions. OPEN is framework to facilitate the low-cost creation of CubeSat-class spacecraft via using publically available (provided by the OPEN project) de- signs, software, fabrication instructions and test plans. The base open configuration is designed to be able to be produced with a parts budget of under $5,000. Despite this low cost, it is a very ro- bust spacecraft (with capabilities meeting or exceeding many of the vendor-kit solutions which cost eight-or-more times this amount).

Two approaches for using the OPEN …


Cubesat Software Architecture, Christoffer Korvald, Atif Mohammad, Jeremy Straub, Josh Berk Jan 2012

Cubesat Software Architecture, Christoffer Korvald, Atif Mohammad, Jeremy Straub, Josh Berk

Jeremy Straub

No abstract provided.