Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Power System Control

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers are widely used to damp out the low frequency oscillations in power systems. In power system control literature, there is a lack of stability analysis for proposed controller designs. This paper proposes a Neural Network (NN) based stabilizing controller design based on a sixth order single machine infinite bus power system model. The NN is used to compensate the complex nonlinear dynamics of power system. To speed up the learning process, an adaptive signal is introduced to the NN's weights updating rule. The NN can be directly used online without offline training process. Magnitude constraint of the …


Neural Network Based Decentralized Controls Of Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Neural Network Based Decentralized Controls Of Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a suite of neural network (NN) based decentralized controller designs for large scale power systems' generators, one is for the excitation control and the other is for the steam valve control. Though the control inputs are calculated using local signals, the transient and overall system stability can be guaranteed. NNs are used to approximate the unknown and/or imprecise dynamics of the local power system dynamics and the inter-connection terms, thus the requirements for exact system parameters are relaxed. Simulation studies with a three-machine power system demonstrate the effectiveness of the proposed controller designs.


Neural Network Based Decentralized Excitation Control Of Large Scale Power Systems, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, David A. Cartes, Jagannathan Sarangapani Jul 2006

Neural Network Based Decentralized Excitation Control Of Large Scale Power Systems, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, David A. Cartes, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a neural network (NN) based decentralized excitation controller design for large scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem controllers can be guaranteed. NNs are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded (UUB). Simulation results with a 3-machine power system demonstrate the …