Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering

California Polytechnic State University, San Luis Obispo

Additive Manufacturing

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Minimizing Leakage In Thin Walled Structures Printed Through Selective Laser Melting, Andrew Spencer Yap Jun 2021

Minimizing Leakage In Thin Walled Structures Printed Through Selective Laser Melting, Andrew Spencer Yap

Master's Theses

In this project, the scan strategy of selective laser melting (SLM) for thin walled structures was investigated by changing laser parameters and tool path. Producing thin walled structures is difficult due to defects such as warpage and porosity. A layer on the SLM 125 consists of hatch volume, fill contours, and borders, however, for thin walls, hatch volume can become unavailable, resulting in a solely border/fill contour laser tool path.

Three central composite designs (CCD) were created to optimize the laser parameters of borders to minimize leakage rate and porosity. The two factors changed were border laser power and scanning …


Transfer Learning Approach To Powder Bed Fusion Additive Manufacturing Defect Detection, Michael Wu Jun 2021

Transfer Learning Approach To Powder Bed Fusion Additive Manufacturing Defect Detection, Michael Wu

Master's Theses

Laser powder bed fusion (LPBF) remains a predominately open-loop additive manufacturing process with minimal in-situ quality and process control. Some machines feature optical monitoring systems but lack automated analytical capabilities for real-time defect detection. Recent advances in machine learning (ML) and convolutional neural networks (CNN) present compelling solutions to analyze images in real-time and to develop in-situ monitoring.

Approximately 30,000 selective laser melting (SLM) build images from 31 previous builds are gathered and labeled as either “okay” or “defect”. Then, 14 open-sourced CNN were trained using transfer learning to classify the SLM build images. These models were evaluated by F1 …


Redesign Of Cubesat For Beam Charging, Kuba Preis Jun 2019

Redesign Of Cubesat For Beam Charging, Kuba Preis

Industrial and Manufacturing Engineering

This paper is intended to be a study in the applications of the design freedom granted by additive manufacture in the design of a 1U CubeSat frame. The main loads experienced by a CubeSat are structural (during launch) and thermal (solar radiation). Beam charging is an emerging technology which involves charging a CubeSat using a laser beam. In this paper, a CubeSat frame was redesigned to account for the structural loads induced during launch and the thermal loads induced when beam charging. The thermal, weight, design, and structural requirements for a new CubeSat design were derived. The 1U CubeSat frame …


Additive Manufacturing Powder Removal: Viper 2.0, Andrew D. Epperson, Sean Mccracken, Melissa O'Neil, Alex Ward Jun 2019

Additive Manufacturing Powder Removal: Viper 2.0, Andrew D. Epperson, Sean Mccracken, Melissa O'Neil, Alex Ward

Mechanical Engineering

This report presents the final design review of this senior project team. The project is being sponsored by Lawrence Livermore National Laboratory, a federal design agency. Lawrence Livermore National Laboratory is interested in improving their metal additive manufacturing process. The goal of this senior project is to improve the efficiency and safety of a method currently being used to remove metal powders for additively manufactured components. A senior project team in 2017-2018 created the Vibration Induced Powder Evacuator and Reclaimer (VIPER), a device that uses a vibration motor to shake a printed part until it is clean from excess powder. …


Development Of An Additive Manufacturing Compression Molding Process For Low Cost In-House Prototyping, Grant Forrester Warden Jun 2018

Development Of An Additive Manufacturing Compression Molding Process For Low Cost In-House Prototyping, Grant Forrester Warden

Industrial and Manufacturing Engineering

Composite parts can be manufactured using various processes. Generally, a mix of resin and fiber is formed into the desired geometry using a mold and pressure. One process used by Dr. Joseph Mello in his research is known as compression molding. Compression molds are generally made from large billets of aluminum or stainless steel, are machined by a CNC mill, and are then hand-finished with polishes and mold preparation products. This process is expensive, requires large machinery and experienced operators, and introduces long lead times relative to the design cycle of the part being manufactured. The nature of Dr. Mello's …