Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Oil, Gas, and Energy

Theses/Dissertations

2017

Institution
Keyword
Publication

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Design And Implementation Of A Multi-Port Solid State Transformer For Flexible Der Integration, Mohammad Rashidi Dec 2017

Design And Implementation Of A Multi-Port Solid State Transformer For Flexible Der Integration, Mohammad Rashidi

Theses and Dissertations

Conventional power system includes four major sections, bulk generation, transmission network, distribution network, and loads. The main converter in the conventional electric grid is the low-frequency passive transformer providing galvanic isolation and voltage regulation for various voltage zones. In this configuration, small-scale renewable energy resources are generally connected to the power system at low voltage zones or inside microgrids.

Recent developments in the design of power electronic elements with higher voltage and power ratings and medium/high frequency enable making use of solid state transformer at different voltage levels in the distribution system and microgrid design. In this work, the concept …


Geophysical Delineation Of Megaporosity And Fluid Migration Pathways For Geohazard Characterization Within The Delaware Basin, Culberson County, Texas, Jonathan David Woodard Dec 2017

Geophysical Delineation Of Megaporosity And Fluid Migration Pathways For Geohazard Characterization Within The Delaware Basin, Culberson County, Texas, Jonathan David Woodard

Electronic Theses and Dissertations

ABSTRACT

Differential dissolution of gypsum karst within the Delaware Basin poses a significant threat to infrastructure that society depends on. The study area is located in Culberson County, Texas and traverses a distance of approximately 54 kilometers along RM 652 within the Gypsum Plain which is situated on the northern margin of the Chihuahua Desert and includes outcrops of Castile and Rustler strata that host karst geohazards. Regions of karst geohazard potential have been physically surveyed proximal to the study area in evaporites throughout the Castile Formation outcrop; minimal hazards, in comparison to the Castile Formation, have been documented in …


Experimental Study Of High-Temperature Range Latent Heat Thermal Energy Storage, Chatura Wickramaratne Nov 2017

Experimental Study Of High-Temperature Range Latent Heat Thermal Energy Storage, Chatura Wickramaratne

USF Tampa Graduate Theses and Dissertations

Among all thermal energy storage (TES) systems, latent heat thermal energy storage (LHTES) attracts high interest due to its high energy density and high exergetic efficiency. Due to the high enthalpy of fusion and low cost, inorganic salts are becoming popular as phase change materials and are used as the storage media in LHTES systems. The main drawbacks for the inorganic salts are their low thermal conductivity and high reactivity above 500°C. Therefore, designing a cost-effective containment at these conditions with longevity is a challenge. Macro-encapsulation of the PCM is one way to solve both the PCM containment issue as …


Research On Optimal Allocation Of Oil Spill Contingency Resources Base On Oil Spill Risk Assessment In Taizhou Port, Liangyu Wang Aug 2017

Research On Optimal Allocation Of Oil Spill Contingency Resources Base On Oil Spill Risk Assessment In Taizhou Port, Liangyu Wang

Maritime Safety & Environment Management Dissertations (Dalian)

No abstract provided.


Studies In Pressurized Oxy-Combustion: Process Development And Control Of Radiative Heat Transfer, Akshay Gopan Aug 2017

Studies In Pressurized Oxy-Combustion: Process Development And Control Of Radiative Heat Transfer, Akshay Gopan

McKelvey School of Engineering Theses & Dissertations

Fossil fuels supply over 80% of the world’s primary energy and more than two-thirds of the world’s electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide—a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would …


Window Inserts And The People Adopting Them: Building Sustainable Communities In Maine, Daniel Sean Mistro Aug 2017

Window Inserts And The People Adopting Them: Building Sustainable Communities In Maine, Daniel Sean Mistro

Electronic Theses and Dissertations

Residents of Maine face a large monetary expense to heat their homes in the winter. In Maine it takes 540 gallons of heating oil each year to heat a typical home [1]. Interior window inserts may be a practical solution to improve comfort, save money, and consume less environmentally harmful fossil fuels during cold winter months. The window inserts discussed in this paper are custom measured to fit into a window and consist of a wooden frame that is wrapped in two layers of polyolefin film and weather stripped for a snug fit. Commercial inserts cost $20-$36/square foot, or approximately …


An Economic Analysis Of Residential Photovoltaic Systems With And Without Energy Storage, Rodney Moses Kizito Aug 2017

An Economic Analysis Of Residential Photovoltaic Systems With And Without Energy Storage, Rodney Moses Kizito

Graduate Theses and Dissertations

Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of …


Evaluating One-Step Catalytic Free Method Including Hydrolysis, Esterification, Transesterification, And Degradation Reactions To Produce Biodiesel From Soybean Oil, Mahmood Gheni Jebur Aug 2017

Evaluating One-Step Catalytic Free Method Including Hydrolysis, Esterification, Transesterification, And Degradation Reactions To Produce Biodiesel From Soybean Oil, Mahmood Gheni Jebur

Graduate Theses and Dissertations

Due to the environmental and economic impacts of diesel fuel based on petroleum, several studies have been done to find an alternative source of energy. Biodiesel is considered one of these alternative sources. It is a renewable source of energy produced from vegetable oils and animal fats. There are two main reaction routes used to produce biodiesel (fatty acid methyl esters). Transesterification reaction is the first route used to convert triglycerides to fatty acid methyl esters (FAMEs), while hydrolysis followed by esterification reactions are the second route employed to convert triglycerides to free fatty acids (FFA) and then further converted …


Numerical Study Of Thermal Performance Improvement By Novel Structures In The Building Energy Storage Systems, Junling Xie Aug 2017

Numerical Study Of Thermal Performance Improvement By Novel Structures In The Building Energy Storage Systems, Junling Xie

Theses and Dissertations

In this work, numerical studies were conducted to investigate the effectiveness of two fin-like novel structures used for heat-transfer enhancement in two building energy storage systems including thermal energy storage and battery energy storage.

Firstly, thin layer ring structure was numerically investigated for thermal performance improvement in the thermal energy storage. From the results obtained in this study, the area ratio can be increased by 4% when using the thin layer ring during the same time period. The thin layer ring structure can shorten ice formation period and increase its efficiency. Further study was conducted for the factorial analysis of …


Pore Resolved Simulations Of Char Particle Gasification, Greg Hingwah Fong Jul 2017

Pore Resolved Simulations Of Char Particle Gasification, Greg Hingwah Fong

Master's Theses (2009 -)

Coal is a significant source of energy in today’s world and many studies have been conducted in order to better understand and optimize its use. To address greenhouse effects associated with coal combustion, cleaner methods for harnessing its energy are being explored. One such method is gasification, a process which converts coal into syngas, a mixture consisting primarily of H2 and CO. Syngas can be used to generate electricity or to produce hydrocarbons that can be used as fuels. To better understand and optimize the process, simulations can be used to study the gasification of individual porous char particles that …


Carbon And Nutrient Balances In Microalgal Bioenergy System, Eunyoung Lee Jun 2017

Carbon And Nutrient Balances In Microalgal Bioenergy System, Eunyoung Lee

USF Tampa Graduate Theses and Dissertations

This research investigated life cycle environmental impacts and benefits of an integrated microalgae system with wastewater treatment system using an integrated process modeling approach combined with experimentation. The overall goal of this research is to understand energy, carbon and nutrient balances in the integrated system and to evaluate the environmental impacts and benefits of the integrated system from a carbon, nutrient, and energy perspective. In this study, four major research tasks were designed to contribute to a comprehensive understanding of the environmental and economic sustainability of the integrated system, which included development of an integrated co-limitation kinetic model for microalgae …


Comprehensive Silica Removal With Ferric Compounds For Industrial Wastewater Reuse, Ehren D. Baca Jun 2017

Comprehensive Silica Removal With Ferric Compounds For Industrial Wastewater Reuse, Ehren D. Baca

Civil Engineering ETDs

Cooling towers, integrated circuit (IC) manufacture and reverse osmosis (RO) generate copious amounts of wastewater high in colloidal and reactive silica inhibiting on-site or synergistic reuse. Silica present in cooling water can reach solubility limits via evaporation and form impervious scale on heat transfer surfaces that decreases efficiency. When water is treated by RO operating at high rejection, silica forms difficult-to-remove scale on the membrane feed side in the form of glassy patches and communities of aggregate particles, inhibiting aspirations for zero liquid discharge. Current methods for silica scale mitigation include abundant dosing with chemical antiscalents or complex operating schemes. …


Sub 2 Nm Particle Characterization In Systems With Aerosol Formation And Growth, Yang Wang May 2017

Sub 2 Nm Particle Characterization In Systems With Aerosol Formation And Growth, Yang Wang

McKelvey School of Engineering Theses & Dissertations

Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied …


Optimization And Performance Study Of Select Heating Ventilation And Air Conditioning Technologies For Commercial Buildings, Rajeev Kamal Mar 2017

Optimization And Performance Study Of Select Heating Ventilation And Air Conditioning Technologies For Commercial Buildings, Rajeev Kamal

USF Tampa Graduate Theses and Dissertations

Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times.

Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings:

1. Use of gas heat …


Study Of Periodical Flow Heat Transfer In An Internal Combustion Engine, Xi Luo Jan 2017

Study Of Periodical Flow Heat Transfer In An Internal Combustion Engine, Xi Luo

Wayne State University Dissertations

In-cylinder heat transfer is one of the most critical physical behaviors which has a direct influence on engine out emission and thermal efficiency for IC engine. In-cylinder wall temperature has to be precisely controlled to achieve high efficiency and low emission. However, this cannot be done without knowing gas-to-wall heat flux. This study reports on the development of a technique suitable for engine in-cylinder surface temperature measurement, as the traditional method is “hard to reach.” A laser induced phosphorescence technique was used to study in-cylinder wall temperature effects on engine out unburned hydrocarbons during the engine transitional period (warm up). …


Quantifying The Characteristic Length Of A Combustor For An Ionic Liquid Monopropellant Thruster, Kimberly Marie Hogge Jan 2017

Quantifying The Characteristic Length Of A Combustor For An Ionic Liquid Monopropellant Thruster, Kimberly Marie Hogge

Open Access Theses & Dissertations

Ionic liquid monopropellants are currently being researched as a promising alternative to hydrazine in propulsion systems. This report presents a flame study that delineates the flame length of the expected decomposition products from an ionic liquid monopropellant. Through these studies, the characteristic length of a combustion chamber will be defined through calculations and empirical correlations. There is limited information on designing a propulsion system for an ionic liquid monopropellant. Therefore, defining the magnitude for an effective characteristic length serves as beneficial in designing a propulsion system for an ionic liquid monopropellant thruster.


Renewable Energy Systems Optimization Using Monte Carlo Simulation And Evolutionary Algorithms, Nicolas Lopez Jan 2017

Renewable Energy Systems Optimization Using Monte Carlo Simulation And Evolutionary Algorithms, Nicolas Lopez

Open Access Theses & Dissertations

This Dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid

microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a …


Pyroelectric Ceramics As Temperature Sensors For Energy System Applications, Jorge Luis Silva Jan 2017

Pyroelectric Ceramics As Temperature Sensors For Energy System Applications, Jorge Luis Silva

Open Access Theses & Dissertations

Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both …


Development Of A Dynamic Cfd Model For Offshore Oscillating Water Columns With Non-Linear Interactions, Ken O'Connell Jan 2017

Development Of A Dynamic Cfd Model For Offshore Oscillating Water Columns With Non-Linear Interactions, Ken O'Connell

Theses

This thesis focuses on the development of a state of the art modelling technique for offshore Oscillating Water Column (OWC) type Wave Energy Converters (WEC) using Computational Fluid Dynamics (CFD). Current literature indicates a limited amount of work has been completed on studying these devices containing non-linear time dependent flow phenomenon. Initially, a 2D Numerical Wave Tank (NWT) is studied to reduce discretisation error in order to reproduce accurately propagating waves. Further development into a 3D domain permits the geometrical requirements of an OWC type spar buoy to be included.

In parallel, a single Degree of Freedom (DOF) model is …


Ab Initio Study Of The Effects Of Humidity On Perovskite Based Hybrid Solar Cell Interfaces, Shantanu Rajendra Rachalwar Jan 2017

Ab Initio Study Of The Effects Of Humidity On Perovskite Based Hybrid Solar Cell Interfaces, Shantanu Rajendra Rachalwar

Browse all Theses and Dissertations

Despite the impressive success of perovskite-based hybrid solar cells, their widespread usage has been limited partially owing to stability issues under working environmental conditions. Among these, the effects of humidity are some of the most significant. Water intercalation generally degrades the material, shortens its useful life, and reduces the efficiency of photovoltaic energy conversion. Understanding the reasons for these effects can be achieved through detailed and accurate atomic-scale analysis. Here, we study water intercalation at the interfaces of perovskite-based hybrid solar cell material and TiO2 electrode. Accurate ab initio computer simulations are used to obtain structural and electronic properties. We …


Development Of Computer Program For Wind Resource Assessment, Rotor Design And Rotor Performance, Valentina Jami Jan 2017

Development Of Computer Program For Wind Resource Assessment, Rotor Design And Rotor Performance, Valentina Jami

Browse all Theses and Dissertations

People understand and have seen that renewable energy has many advantages over conventional energy sources. Because of these advantages, more and more emphasis has been given to generating electrical energy with renewable sources. Among the many renewable and conventional ways currently available for a society to generate electrical power, wind turbines are one of the cheapest ways of doing this. The main objective of this thesis work is to develop a computer program that assesses the wind resource at a given location, designs a wind turbine rotor for optimum power capture for one wind speed, and analyzes the performance of …


Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod Jan 2017

Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod

Browse all Theses and Dissertations

A third-generation of solar cell is based on organic-inorganic hybrid perovskite materials. These have reached up to 22.1% conversion efficiency through exponential growth just within the last decade, compared to much longer improvement times for other photovoltaic technologies. Lead halide perovskites are among the most commonly used materials in this context. Despite the relatively large number of available works on some of these materials, in particular CH3NH3PbI3, others are less investigated. Here, we focused on CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 for assessing structure stability and optical response. Using quantum-mechanics-based first principles approaches, we calculated the optimized structures of these three materials …


Mathematical Modeling Of A P-N Junction Solar Cell Using The Transport Equations, Surjeet Singh Jan 2017

Mathematical Modeling Of A P-N Junction Solar Cell Using The Transport Equations, Surjeet Singh

Browse all Theses and Dissertations

While analytical models are limited in the situations that they can simulate, they are generally easier to implement than numerical models and provide a rapid view of the variables which affect a certain quantity. Analytical models are also very useful in educational situations; such as a graduate class on photovoltaics. The modeling of the interior workings of a solar cell can be complex and involved; and some of the equations can become quite lengthy. A focus of this thesis work is the derivation of the minority carrier density and minority current density equations for a p-n junction solar cell. The …


Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani Jan 2017

Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani

Browse all Theses and Dissertations

Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer …


Computational Modeling Of A Williams Cross Flow Turbine, Sajjan Pokhrel Jan 2017

Computational Modeling Of A Williams Cross Flow Turbine, Sajjan Pokhrel

Browse all Theses and Dissertations

Hydropower is not only the most used renewable energy source in the United States, but in the world. While it is well known that large hydropower facilities, like the Hoover Dam, provide large amounts of electrical power, there is also a tremendous opportunity for hydroelectric power generation from small scale facilities that has largely been overlooked. The work being presented here studies a new cross flow turbine called the Williams Cross Flow Turbine (WCFT), which was designed to extract electric energy from low head, run-of-the-river, small hydropower sites. To spur the implementation of the WCFT in small hydropower applications, and …


Study Of Surface Complexation And Mineral Dissolution During Water-Rock Interaction In High Salinity Waterflooding At Elevated Temperatures, Sameer Salasakar Jan 2017

Study Of Surface Complexation And Mineral Dissolution During Water-Rock Interaction In High Salinity Waterflooding At Elevated Temperatures, Sameer Salasakar

Masters Theses

"High salinity waterflooding for carbonate reservoirs is efficient and cheap method used for improved oil recovery. Various mechanisms have been proposed including adsorption/desorption on rock surface, mineral dissolution and precipitation, multicomponent ion exchange, interfacial tension reduction, fine migration and double layer expansion. These all process alter the wettability which leads to improved oil recovery.

Objective of this study was to understand processes that occur during water-rock interaction when high salinity water is flooded into the reservoir. In this work, effect of temperature on water-rock interaction is studied along with effect of pH and specific surface areas of calcite at normal …