Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella Sep 2023

Uncertainties In Retrieval Of Remote Sensing Reflectance From Ocean Color Satellite Observations, Eder I. Herrera Estrella

Dissertations, Theses, and Capstone Projects

Ocean Color radiometry uses remote sensing to interpret ocean dynamics by retrieving remote sensing reflectance (π‘…π‘Ÿπ‘ ) from satellite imagery at different scales and over different time periods. π‘…π‘Ÿπ‘  spectrum characterizes the ocean color that we observe, and from which we can discern concentrations of chlorophyll, organic and inorganic particles, and carbon fluxes in the ocean and atmosphere. π‘…π‘Ÿπ‘  is derived from the total radiance at the top of the atmosphere (TOA). However, it only represents up to ten percent of the total signal. Hence, the retrieval of π‘…π‘Ÿπ‘  from the total radiance at TOA involves the application of atmospheric correction …


Impact Of Atmospheric Correction On Classification And Quantification Of Seagrass Density From Worldview-2 Imagery, Victoria J. Hill, Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, Kazi Aminul Islam Jan 2023

Impact Of Atmospheric Correction On Classification And Quantification Of Seagrass Density From Worldview-2 Imagery, Victoria J. Hill, Richard C. Zimmerman, Paul Bissett, David Kohler, Blake Schaeffer, Megan Coffer, Jiang Li, Kazi Aminul Islam

OES Faculty Publications

Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line …