Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering

University of Tennessee, Knoxville

Doctoral Dissertations

Radiation

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Multi-Objective Radiological Analysis In Real Environments, David Raji May 2024

Multi-Objective Radiological Analysis In Real Environments, David Raji

Doctoral Dissertations

Designing systems to solve problems arising in real-world radiological scenarios is a highly challenging task due to the contextual complexities that arise. Among these are emergency response, environmental exploration, and radiological threat detection. An approach to handling problems for these applications with explicitly multi-objective formulations is advanced. This is brought into focus with investigation of a number of case studies in both natural and urban environments. These include node placement in and path planning through radioactivity-contaminated areas, radiation detection sensor network measurement update sensitivity, control schemes for multi-robot radioactive exploration in unknown environments, and adversarial analysis for an urban nuclear …


Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl May 2023

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl

Doctoral Dissertations

In the first part of this dissertation, we cover the development of a diamond semiconductor alpha-tagging sensor for associated particle imaging to solve challenges with currently employed scintillators. The alpha-tagging sensor is a double-sided strip detector made from polycrystalline CVD diamond. The performance goals of the alpha-tagging sensor are 700-picosecond timing resolution and 0.5 mm spatial resolution. A literature review summarizes the methodology, goals, and challenges in associated particle imaging. The history and current state of alpha-tagging sensors, followed by the properties of diamond semiconductors are discussed to close the literature review. The materials and methods used to calibrate the …


Development And Characterization Of A Directional Radiation Detection System Using A Fuzzy Logic Algorithm, Michael Joseph Willis Dec 2015

Development And Characterization Of A Directional Radiation Detection System Using A Fuzzy Logic Algorithm, Michael Joseph Willis

Doctoral Dissertations

Traditional radiation detection equipment consists of various types of devices that are capable of determining the presence of radioactive sources in the vicinity of the detection unit. Use of these systems typically consists of survey and search methods that employ broad area sweeps to narrow down the location of a radioactive source. Although these methods are effective, they are typically inefficient and lack the ability to produce a directional bearing of the source relative to the measurement location. More efficient methods that provide relative direction information for detected sources would facilitate a more timely response to a potential radiological threat. …


Characterization Of Mechanically Cooled High Purity Germanium (Hpge) Detectors At Elevated Temperatures, Joseph Benjamin Mccabe May 2015

Characterization Of Mechanically Cooled High Purity Germanium (Hpge) Detectors At Elevated Temperatures, Joseph Benjamin Mccabe

Doctoral Dissertations

High resolution gamma spectroscopy is a tool used in nuclear security applications due to its achievable energy resolution and associated ability to identify special nuclear material. This identification ability is achieved by identifying the characteristic gamma-rays of a material. The challenges that have confronted industry concerning the use of hand-held high purity germanium (HPGe) in homeland security applications have centered on weight, geometry, and cool-down time. Typical liquid nitrogen cooled detectors ranging in size from 10% to 150% detectors will cool down sufficiently within 2-6 hours of filling. The cool-down time achieved in this research ranges from 45 min on …