Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Multiphysics Analyses And Experiments For Safety Of Advanced Light Water Reactor Fuels, Soon K. Lee Dec 2022

Multiphysics Analyses And Experiments For Safety Of Advanced Light Water Reactor Fuels, Soon K. Lee

Doctoral Dissertations

The Fukushima Daiichi nuclear plant accident in 2011 triggered worldwide research and development initiatives to advance Light Water Reactor (LWR) fuel materials with excellent tolerance to high-temperature oxidation and deformation. Accident Tolerant Fuel (ATF) design concepts are expected to improve safety margin and extend coping time during severe accident progression, owing to their enhanced mechanical strength, oxidation, and degradation resistance. These concepts require a series of assessments to be licensed by the United States (US) Nuclear Regulatory Commission (NRC). In addition to enhanced safety from ATF materials, supported by the NRC, the US nuclear industry is seeking opportunities to increase …


Multi-Objective Optimization Of The Fast Neutron Source By Machine Learning, John L. Pevey Dec 2022

Multi-Objective Optimization Of The Fast Neutron Source By Machine Learning, John L. Pevey

Doctoral Dissertations

The design and optimization of nuclear systems can be a difficult task, often with prohibitively large design spaces, as well as both competing and complex objectives and constraints. When faced with such an optimization, the task of designing an algorithm for this optimization falls to engineers who must apply engineering knowledge and experience to reduce the scope of the optimization to a manageable size. When sufficient computational resources are available, unsupervised optimization can be used.

The optimization of the Fast Neutron Source (FNS) at the University of Tennessee is presented as an example for the methodologies developed in this work. …


First Development And Demonstration Of Fiber Optic Bolometer, Seungsup Lee Dec 2022

First Development And Demonstration Of Fiber Optic Bolometer, Seungsup Lee

Doctoral Dissertations

The fiber optic bolometer (FOB) was demonstrated observing a fusion plasma for the first time, and 2D fiber optic bolometer was developed and demonstrated to have high spatial resolution. The FOB is a novel type of a bolometer that is theoretically immune to EMI. A bolometer that is a sensor that measure the power of the incoming electromagnetic radiation. The most common bolometer used in fusion research is a resistive bolometer that utilize resistors in an electrical circuit. Due to high electromagnetic interferences (EMI) in fusion environment, noise can be a serious problem in determining accurate plasma radiation. The demonstration …


Determination Of Near-Sol Carbon Impurity Content Due To Divertor Target Leakage Using Carbon-13 Tracers Via Methane Injection On The Diii-D Tokamak, Jonah David Duran Dec 2022

Determination Of Near-Sol Carbon Impurity Content Due To Divertor Target Leakage Using Carbon-13 Tracers Via Methane Injection On The Diii-D Tokamak, Jonah David Duran

Doctoral Dissertations

Experiments with outer strike point injection of isotopically enriched methane (13CD­4) in DIII-D L-mode discharges have demonstrated the ability to infer near scrape-off-layer (SOL) impurity density profiles based on: far-SOL collector probe (CP) measurements; a stable isotopic mixing model; and SOL impurity transport modelling. This work enables one of the first in-depth investigations on the source and transport of SOL impurities which could hinder performance of future fusion devices. Modelling by DIVIMP and 3DLIM of 13C SOL evolution is consistent with diagnostic observations and indicates that the buildup of injected impurities on plasma-facing surfaces must …


Demonstrating The Use Of Multiple Experimental Techniques To Investigate Helium-Hydrogen Synergies In Tungsten, Wendy A. Garcia Aug 2022

Demonstrating The Use Of Multiple Experimental Techniques To Investigate Helium-Hydrogen Synergies In Tungsten, Wendy A. Garcia

Doctoral Dissertations

Polycrystalline W sample discs measuring 6 mm by 0.5 mm have been exposed to a low-energy (70 eV) He plasma using a low flux ( ) [1.3 times 10 to the 17 Helium per meter squared per second] ECR source located at the University of Tennessee in Dr. Donovan's laboratory. The samples were exposed to three different He fluences ( ) [5 times 10 to the 19 Helium per meter squared, 5 times 10 to the 20 Helium per meter squared, 5 times 10 to the 21 Helium per meter squared] at surface temperatures of ~300 K, 600 K and …


Scale-Bridging Computational Modeling Of Irradiation Effects In Alpha-Zirconium And Its Alloys, Jose Francisco March-Rico Aug 2022

Scale-Bridging Computational Modeling Of Irradiation Effects In Alpha-Zirconium And Its Alloys, Jose Francisco March-Rico

Doctoral Dissertations

One of the issues concerning the long-term lifespan of Zr cladding tubes is an axial expansion and radial contraction that occurs in response to neutron irradiation. This volume-conservative response in the absence of an applied stress has been termed irradiation growth, a consequence of both the inherent anisotropy of alpha-Zr hexagonal close-packed crystal structure, and crystalline texture in tube fabrication. Irradiation growth strains generally saturate at low doses, but suddenly accelerate after an incubation dose. This growth breakaway has been correlated with the nucleation of faulted vacancy loops on basal planes (c-loops); at lower doses, the irradiated Zr microstructure is …


Development Of Metal Halide Perovskites For Radiation Detection, Ryan Tan Aug 2022

Development Of Metal Halide Perovskites For Radiation Detection, Ryan Tan

Doctoral Dissertations

Metal halide perovskite (MHP) semiconductors have attracted significant interest in recent years within photovoltaic and radiation detection communities due to their inexpensive solution growths, high effective atomic number for gamma and X-ray sensing, suitable bandgap, large resistivity, and moderate mobility-lifetime products. The MHP stoichiometry can also be tuned as needed to achieve desired physical and electronic properties. Moreover, the hybrid or organometallic halide perovskite (OMHP) variants contain a large atomic fraction of hydrogen for fast neutron sensing. These qualities make MHPs an attractive low-cost option for meeting detector needs within nuclear security and imaging applications. This work presents the development …


Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Nuclear Thermal Rocket Engine Control Autonomy Via Embedded Decision, David Sikorski May 2022

Nuclear Thermal Rocket Engine Control Autonomy Via Embedded Decision, David Sikorski

Doctoral Dissertations

This doctoral dissertation presents an investigation of embedded decision capabilities as a means for developing nuclear reactor autonomous control. Nuclear thermal propulsion (NTP) is identified as a high priority technology for development, and is the focus of this research. First, a background investigation is presented on the state of the art in nuclear thermal rocket (NTR) engine control and modeling practices, resulting in the development of a low order NTR engine dynamic model based on the literature. The engine model was used to perform the following investigation, and is intended to serve as a research platform for the future development …


Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan May 2022

Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan

Doctoral Dissertations

Nuclear energy technology can be exponentially advanced using advanced manufacturing, which can drastically transform how materials, structures, and designs can be built. Ultrasonic Additive Manufacturing (UAM) represents one of the four main additive manufacturing methods, although it is also the newest. As UAM technology and applications develop, a fundamental understanding of the bonding mechanism is crucial to fully realize its potential. Currently UAM bonding is considered to occur through breaking down surface asperities and removing surface oxides. Plastic deformation occurs although its role is currently unclear. This research analyzes material configurations in a variety of geometries, with similar and dissimilar …


Corrosion And Microstructural Characterization Of Molybdenum-Ysz Cermets Following Hydrogen Exposure Up To 2630 K, Taylor G. Duffin May 2022

Corrosion And Microstructural Characterization Of Molybdenum-Ysz Cermets Following Hydrogen Exposure Up To 2630 K, Taylor G. Duffin

Doctoral Dissertations

Ceramic-metallic (cermet) fuels are a promising fuel type for outer space nuclear thermal propulsion (NTP). A key feasibility issue is the hydrogen chemical compatibility of candidate fuels in the proposed extreme operating temperatures for NTP systems (> 2500 K). In this study, molybdenum matrix cermets containing 40–70 vol% yttria stabilized zirconia (YSZ) particles (as a surrogate for ceramic fuel particles) were produced via spark plasma sintering (SPS) and exposed to flowing hydrogen at high temperature (2000–2630 K). Both steady state and thermally cycled (4 cycles with intermediate cooling to room temperature) conditions were examined for a constant total hot testing …


A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong May 2022

A High Rate Pixelated Neutron Detector For Neutron Reflectometry At The Spallation Neutron Source, Su-Ann Chong

Doctoral Dissertations

This work presents the development of a high-rate 6Li-based pixelated neutron detector for neutron reflectometry instruments at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory. The current detector technology falls short on the instrument requirements, particularly on the counting rate capability. This detector was designed specifically to overcome the limitation in counting rate by having a fully pixelated design from neutron conversion layer to photodetector and readout system. For the neutron converting layer, a 6Li-based neutron scintillator was used. Each scintillator element was coupled to a photodetector, in this case, a silicon photomultiplier (SiPM). The output of each SiPM …