Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering

Air Force Institute of Technology

Faculty Publications

Nuclear forensics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

An Assessment Of The Spatial Variation Of Isotopic Ratios In A Candu Reactor For Nuclear Treaty Monitoring, Aaron W. Burkhardt, James E. Bevins, Stephen H. Baxter Feb 2021

An Assessment Of The Spatial Variation Of Isotopic Ratios In A Candu Reactor For Nuclear Treaty Monitoring, Aaron W. Burkhardt, James E. Bevins, Stephen H. Baxter

Faculty Publications

A 3-D Quarter-Core CANDU-6 is modeled using Serpent 2 for nuclear treaty monitoring. The spatial variation of flux spectra and isotopic concentrations is analyzed to determine the potential isotopic distribution of key radionuclides from standard reactor operations relevant to non-proliferation. The initial results of the model show a 46% difference in overall flux magnitude throughout the core as well as a 2-30% difference in discrete energy flux. The coupled production rate (magnitude) and spectral differences can contribute to significant spatial variations in isotope ratios throughout the core. Initial results indicate 239 Pu/ 240 Pu ratios vary by as much as …


Quantitative Analysis Of Cerium-Gallium Alloys Using A Hand-Held Laser Induced Breakdown Spectroscopy Device, Ashwin P. Rao, Matthew Cook, Howard L. Hall, Michael B. Shattan Sep 2019

Quantitative Analysis Of Cerium-Gallium Alloys Using A Hand-Held Laser Induced Breakdown Spectroscopy Device, Ashwin P. Rao, Matthew Cook, Howard L. Hall, Michael B. Shattan

Faculty Publications

A hand-held laser-induced breakdown spectroscopy device was used to acquire spectral emission data from laser-induced plasmas created on the surface of cerium-gallium alloy samples with Ga concentrations ranging from 0–3 weight percent. Ionic and neutral emission lines of the two constituent elements were then extracted and used to generate calibration curves relating the emission line intensity ratios to the gallium concentration of the alloy. The Ga I 287.4-nm emission line was determined to be superior for the purposes of Ga detection and concentration determination. A limit of detection below 0.25%was achieved using a multivariate regression model of the Ga I …