Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Elucidating And Leveraging Dynamics-Function Relationships In Neural Circuits Through Modeling And Optimal Control, Sruti Mallik Aug 2021

Elucidating And Leveraging Dynamics-Function Relationships In Neural Circuits Through Modeling And Optimal Control, Sruti Mallik

McKelvey School of Engineering Theses & Dissertations

A fundamental research question in neuroscience pertains to understanding how neural networks through their activity encode and decode information. In this research, we build on methods from theoretical domains such as control theory, dynamical systems analysis and reinforcement learning to investigate such questions. Our objective is two-fold: first, to use methods from engineering to identify specific objectives that neural circuits might be optimizing through their spatiotemporal activity patterns, and second, to draw motivation from neuroscience to formulate new engineering principles such as synthesis of dynamical networks for decentralized control applications. We specifically take a top-down, optimization driven approach in our …


Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye Oct 2020

Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials …


Automated And Standardized Tools For Realistic, Generic Musculoskeletal Model Development, Trevor Rees Moon Jan 2020

Automated And Standardized Tools For Realistic, Generic Musculoskeletal Model Development, Trevor Rees Moon

Graduate Theses, Dissertations, and Problem Reports

Human movement is an instinctive yet challenging task that involves complex interactions between the neuromusculoskeletal system and its interaction with the surrounding environment. One key obstacle in the understanding of human locomotion is the availability and validity of experimental data or computational models. Corresponding measurements describing the relationships of the nervous and musculoskeletal systems and their dynamics are highly variable. Likewise, computational models and musculoskeletal models in particular are vitally dependent on these measurements to define model behavior and mechanics. These measurements are often sparse and disparate due to unsystematic data collection containing variable methodologies and reporting conventions. To date, …


Particle Swarm Optimization Using Multiple Neighborhood Connectivity And Winner Take All Activation Applied To Biophysical Models Of Inferior Colliculus Neurons, Brandon S. Coventry Jul 2014

Particle Swarm Optimization Using Multiple Neighborhood Connectivity And Winner Take All Activation Applied To Biophysical Models Of Inferior Colliculus Neurons, Brandon S. Coventry

Open Access Theses

Age-related hearing loss is a prevalent neurological disorder, affecting as many as 63% of adults over the age of 70. The inability to hear and understand speech is a cause of much distress in aged individuals and is becoming a major public health concern as age-related hearing loss has also been correlated with other neurological disorders such as Alzheimer's dementia. The Inferior Colliculus (IC) is a major integrative auditory center, receiving excitatory and inhibitory inputs from several brainstem nuclei. This complex balance of excitation and inhibition gives rise to complex neural responses, which are measured in terms of firing rate …