Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Engineering

Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman Dec 2018

Generating Exploration Mission-3 Trajectories To A 9:2 Nrho Using Machine Learning, Esteban Guzman

Master's Theses

The purpose of this thesis is to design a machine learning algorithm platform that provides expanded knowledge of mission availability through a launch season by improving trajectory resolution and introducing launch mission forecasting. The specific scenario addressed in this paper is one in which data is provided for four deterministic translational maneuvers through a mission to a Near Rectilinear Halo Orbit (NRHO) with a 9:2 synodic frequency. Current launch availability knowledge under NASA’s Orion Orbit Performance Team is established by altering optimization variables associated to given reference launch epochs. This current method can be an abstract task and relies on …


Navigation With Artificial Neural Networks, Joseph A. Curro Ii Sep 2018

Navigation With Artificial Neural Networks, Joseph A. Curro Ii

Theses and Dissertations

The objective of this dissertation is to explore the applications for Artificial Neural Networks (ANNs) in the field of Navigation. The state of the art for ANNs has improved significantly so now they can rival and even surpass humans in problems once thought impossible. We present different methods to augment, combine, or replace existing Navigation filters with ANN. The main focus of these methods is to use as much existing knowledge as possible then use ANNs to extend the current knowledge base. Next, improvements are made for a class of Artificial Neural Network (ANN)s which provide covariance called Mixture Density …


Simplex Control Methods For Robust Convergence Of Small Unmanned Aircraft Flight Trajectories In The Constrained Urban Environment, Michael D. Zollars Sep 2018

Simplex Control Methods For Robust Convergence Of Small Unmanned Aircraft Flight Trajectories In The Constrained Urban Environment, Michael D. Zollars

Theses and Dissertations

Constrained optimal control problems for Small Unmanned Aircraft Systems (SUAS) have long suffered from excessive computation times caused by a combination of constraint modeling techniques, the quality of the initial path solution provided to the optimal control solver, and improperly defining the bounds on system state variables, ultimately preventing implementation into real-time, on-board systems. In this research, a new hybrid approach is examined for real-time path planning of SUAS. During autonomous flight, a SUAS is tasked to traverse from one target region to a second target region while avoiding hard constraints consisting of building structures of an urban environment. Feasible …


Optimal Finite Thrust Guidance Methods For Constrained Satellite Proximity Operations Inspection Maneuvers, Eric R. Prince Sep 2018

Optimal Finite Thrust Guidance Methods For Constrained Satellite Proximity Operations Inspection Maneuvers, Eric R. Prince

Theses and Dissertations

Algorithms are developed to find optimal guidance for an inspector satellite operating nearby a resident space object (RSO). For a non-maneuvering RSO, methods are first developed for a satellite subject to maximum slew rates to conduct an initial inspection of an RSO, where the control variables include the throttle level and direction of the thrust. Second, methods are developed to optimally maneuver a satellite with on/off thrusters into a natural motion circumnavigation or teardrop trajectory, subject to lighting and collision constraints. It is shown that for on/off thrusters, a control sequence can be parameterized to a relatively small amount of …


Design And Performance Estimation Of A Low-Reynolds Number Unmanned Aircraft System, Sean Lauderdale King Jul 2018

Design And Performance Estimation Of A Low-Reynolds Number Unmanned Aircraft System, Sean Lauderdale King

LSU Master's Theses

The purpose of this thesis is to conceptually design a fixed-wing unmanned aircraft systems (UAS) with a higher flight-time and top stable speed than comparable systems. The vehicle adheres to specifications derived from the client, the market, and the Federal Aviation Administration (FAA). To broadly meet these requirements, the vehicle must fly for a minimum of three hours, return to the original flight path quickly if perturbed, and must be hand-launched. The vehicle designed must also have a large potential center of gravity movement to allow for customization of the planform and client customization.

An iterative design process was used …


Mitigating Interference With Knowledge-Aided Subarray Pattern Synthesis And Space Time Adaptive Processing, Yongjun Yoon Jun 2018

Mitigating Interference With Knowledge-Aided Subarray Pattern Synthesis And Space Time Adaptive Processing, Yongjun Yoon

Theses and Dissertations

Phased arrays are essential to airborne ground moving target indication (GMTI), as they measure the spatial angle-of-arrival of the target, clutter, and interference signals. The spatial and Doppler (temporal) frequency is utilized by space-time adaptive processing (STAP) to separate and filter out the interference from the moving target returns. Achieving acceptable airborne GMTI performance often requires fairly large arrays, but the size, weight and power (SWAP) requirements, cost and complexity considerations often result in the use of subarrays. This yields an acceptable balance between cost and performance while lowering the system’s robustness to interference. This thesis proposes the use of …


Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri Jun 2018

Role Of Diagnostic Monitoring Software Versus Fault-Tolerant Components In The Development Of Spacecraft Avionics Systems, Andrew Attorri

Honors Theses

In any spacecraft, there are several systems that must work simultaneously to ensure a safe mission. One critical system is the ‘avionics’ system, which is comprised of all of the electronic controls on-board the spacecraft, as well as radio links to other craft and ground stations. These systems are present for both manned or unmanned spacecraft.

Throughout the history of spaceflight, there have been several disasters related to avionics failures. To make these systems safer and more reliable, two main strategies have been adopted. The first, more established approach is through use of fault-tolerant components, which can operate under a …


Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano Jun 2018

Orbital Constellation Design And Analysis Using Spherical Trigonometry And Genetic Algorithms: A Mission Level Design Tool For Single Point Coverage On Any Planet, Joseph R. Gagliano

Master's Theses

Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will …


Determining Feasibility Of A Propulsionless Microsatellite Formation Flight Mission, Aaron Levis Jun 2018

Determining Feasibility Of A Propulsionless Microsatellite Formation Flight Mission, Aaron Levis

Master's Theses

Benefits of developing missions with multiple formation flying spacecraft as an alternative to a traditional monolithic vehicle are becoming apparent. In some cases, these missions can lower cost and increase flexibility among other situational advantages. However, there are various limitations that are imposed by these missions that are centered on the concept of maintaining the necessary formation. One such limitation is that of the propulsion system required for each spacecraft. To mitigate the complexity and mass of the onboard propulsion, the pairing of electromagnetic actuators and differential drag to replace the functionality of a propulsive system is investigated. By using …


Active Permanent Magnet Attitude Control For Cubesats Using Mu-Metal Shielding, Maxwell Martin May 2018

Active Permanent Magnet Attitude Control For Cubesats Using Mu-Metal Shielding, Maxwell Martin

Mechanical Engineering Undergraduate Honors Theses

Cube-Satellites (CubeSats) are nanosatellites composed of cube shaped units, each nominally 10cm to a side and around 1kg in mass. Due to their inherent size and weight limitations, it is often impractical to use conventional attitude, or rotational, control methods such as thrusters on these small satellites. Several methods, including magnetorquer rods and small reaction wheels, are often used instead of traditional methods to work around the size and weight limitations. As a new alternative to these methods, a permanent magnet mounted on a rotatable shaft could be used to achieve attitude control. In much the same way that a …


Depot For Martian And Extraterrestrial Transport Resupply (Demetr), Emily Beckman, Ethan Vogel, Caleb Peck, Nicholas Patterson May 2018

Depot For Martian And Extraterrestrial Transport Resupply (Demetr), Emily Beckman, Ethan Vogel, Caleb Peck, Nicholas Patterson

Chancellor’s Honors Program Projects

No abstract provided.


Integrity Monitoring For Automated Aerial Refueling: A Stereo Vision Approach, Thomas R. Stuart Mar 2018

Integrity Monitoring For Automated Aerial Refueling: A Stereo Vision Approach, Thomas R. Stuart

Theses and Dissertations

Unmanned aerial vehicles (UAVs) increasingly require the capability to y autonomously in close formation including to facilitate automated aerial refueling (AAR). The availability of relative navigation measurements and navigation integrity are essential to autonomous relative navigation. Due to the potential non-availability of the global positioning system (GPS) during military operations, it is highly desirable that relative navigation can be accomplished without the use of GPS. This paper develops two algorithms designed to provide relative navigation measurements solely from a stereo image pair. These algorithms were developed and analyzed in the context of AAR using a stereo camera system modeling that …


Design And Test Of A Uav Swarm Architecture Over A Mesh Ad-Hoc Network, Timothy J. Allen Mar 2018

Design And Test Of A Uav Swarm Architecture Over A Mesh Ad-Hoc Network, Timothy J. Allen

Theses and Dissertations

The purpose of this research was to develop a testable swarm architecture such that the swarm of UAVs collaborate as a team rather than acting as several independent vehicles. Commercial-off-the-shelf (COTS) components were used as they were low-cost, readily available, and previously proven to work with at least two networked UAVs. Initial testing was performed via software-in-the-loop (SITL) demonstrating swarming of three simulated multirotor aircraft, then transitioned to real hardware. The architecture was then tested in an outdoor nylon netting enclosure. Command and control (C2) was provided by software implementing an enhanced version of Reynolds’ flocking rules via an onboard …


Military Application Of Aerial Photogrammetry Mapping Assisted By Small Unmanned Air Vehicles, Kijun Lee Mar 2018

Military Application Of Aerial Photogrammetry Mapping Assisted By Small Unmanned Air Vehicles, Kijun Lee

Theses and Dissertations

This research investigated the practical military applications of the photogrammetric methods using remote sensing assisted by small unmanned aerial vehicles (SUAVs). The research explored the feasibility of UAV aerial mapping in terms of the specific military purposes, focusing on the geolocational and measurement accuracy of the digital models, and image processing time. The research method involved experimental flight tests using low-cost Commercial off-the-shelf (COTS) components, sensors and image processing tools to study key features of the method required in military like location accuracy, time estimation, and measurement capability. Based on the results of the data analysis, two military applications are …


Modeling A Space-Based Quantum Link, Alexander W. Duchane Mar 2018

Modeling A Space-Based Quantum Link, Alexander W. Duchane

Theses and Dissertations

Quantum sources and single photon detectors have improved, allowing quantum algorithms for communication, encryption, computing, and sensing to transition from theory and small-scale laboratory experiments to field experiments. One such quantum algorithm, Quantum Key Distribution, uses optical pulses to generate shared random bit strings between two locations. These shared bit strings can be turned into encryption keys to be used as a one-time-pad or integrated with symmetric encryption techniques such as the Advanced Encryption Standard. This method of key generation and encryption is resistant to future advances in quantum computing which significantly degrade the effectiveness of current asymmetric key sharing …


An Exploration Of Error-Correcting Codes For Use In Noise-Prone Satellite Environments, Min W. Kang Mar 2018

An Exploration Of Error-Correcting Codes For Use In Noise-Prone Satellite Environments, Min W. Kang

Theses and Dissertations

Satellites are crucial for the modern world to function properly as they provide Global Navigation Satellite System (GNSS) and global communication. However, the data that is stored on these satellites can be corrupted by the radiation found in space, and its bits can be improperly flipped. In the past, Forward Error Correction (FEC) algorithms were selected based on their strength and implemented to correct these bit flips back to their original values. This thesis seeks to determine if the strength of the FEC algorithms Reed Solomon (RS) code and Reed Solomon Product Code (RSPC) directly translates to their effectiveness. These …


Stabilized Rpa Flight In Building Proximity Operations, Michael M. Kaniut Mar 2018

Stabilized Rpa Flight In Building Proximity Operations, Michael M. Kaniut

Theses and Dissertations

The thesis seeks a solution to the requirement for a highly reliable and capable Unmanned Air Vehicle (UAV) to support a wide array of missions and applications that require close proximity flight to structures. The scope of the project includes the drafting of a concept of operations (CONOPs) describing how the mission requirements might be met using the sensor, operators, and air vehicle described here in. The demonstration of the wall-following section of that CONOPs is performed by cart testing a custom algorithm and evaluating its ability to react to its environment. Finally, a flight test was performed to characterize …


Optimal Trajectory Generation In A Dynamic Multi-Body Environment Using A Pseudospectral Method, Jacob A. Dahlke Mar 2018

Optimal Trajectory Generation In A Dynamic Multi-Body Environment Using A Pseudospectral Method, Jacob A. Dahlke

Theses and Dissertations

High-altitude parking orbits could provide resiliency to the military space infrastructure by providing redundancy in key assets, allowing for rapid reconstitution of underperforming satellites. When analyzing trajectories in a high-altitude regime, two-body models of Keplerian motion become less accurate since the gravitational effects of other bodies are no longer negligible. To provide a higher fidelity model of the dynamics in a high-altitude regime, a multiple-body model can be used. In the Earth-Moon system, a spacecraft operating in the high-altitude regime can be modeled with three-body dynamics. With certain simplifying assumptions, the model is called the circular-restricted three-body problem (CR3BP). The …


Algorithms For Small Satellite Formation Flying, Robert B. Larue Mar 2018

Algorithms For Small Satellite Formation Flying, Robert B. Larue

Theses and Dissertations

This thesis presents algorithms for spacecraft formation flying using impulsive thrust and low-thrust methods. The general circular orbit formation initial conditions are derived in terms of equinoctial elements. Physical significance of the bounded relative motion parameters is presented for the case of general circular orbits. The developed algorithms are posed in terms of equinoctial elements for a singularity-free approach. The algorithms are assessed by numerical propagation of the inertial equations of motion with J2 and drag perturbations. Methods are presented for minimizing the ΔV required for formation initialization. An examination of the performance of open-loop and closed-loop control is provided …


Navigation Using Vector And Tensor Measurements Of The Earth's Magnetic Anomaly Field, Lauren A. Mount Mar 2018

Navigation Using Vector And Tensor Measurements Of The Earth's Magnetic Anomaly Field, Lauren A. Mount

Theses and Dissertations

This research explores the viability of using a navigation system that relies on measurements of the magnetic anomaly field as an alternative to GPS navigation. Previous research has been conducted on developing a navigation system using the intensity of the Earth's magnetic anomaly field as an alternative signal. This research focuses on using vector and tensor measurements, as opposed to scalar measurements of the anomaly field, as a means of obtaining accurate position and orientation solutions. This paper presents two navigation systems. The first uses an Extended Kalman Filter (EKF) with vector measurements of the magnetic anomaly field to aid …


Effects Of Position Uncertainty On Passive Multistatic Sar Resolution Measures, Duy K. Nguyen Mar 2018

Effects Of Position Uncertainty On Passive Multistatic Sar Resolution Measures, Duy K. Nguyen

Theses and Dissertations

Given numerous exciting potentials including substantial cost savings, passive multistatic synthetic aperture radar (PMSAR) has been gaining more attention in the radar community. However, PMSAR research efforts such as emitters of opportunity selection thus far have not considered radar position uncertainty. Seeking to fill this knowledge gap, we run Monte Carlo trials to simulate transmitter position uncertainty and examine the effects on the multistatic resolution of radar sets of different geometries, center frequencies and bandwidths. By monitoring the 3dB contour of the multistatic point spread function, we find that the multistatic resolution worsens on average and the data spread grows …


Design And Evaluation Of Novel Attitude Estimation System Using Mems Sensors For Indoor Uas, Joshua Bruce Milam Jan 2018

Design And Evaluation Of Novel Attitude Estimation System Using Mems Sensors For Indoor Uas, Joshua Bruce Milam

Graduate Theses, Dissertations, and Problem Reports

Most small unmanned aerial systems in use today, employ extended Kalman filter sensor fusion algorithms in order to provide accurate estimations of attitude or orientation. These complex algorithms use measurements from GPS receivers and magnetometer sensors that can be rendered useless in GPS denied environments or areas of significant magnetic interference, such as inside buildings or other structures. The complexity of these algorithms makes them inaccessible for some researchers and hobbyists who wish to code their own attitude estimation algorithms. This complexity is also computationally expensive and requires processors that are powerful enough to operate the algorithms along with any …


Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar Jan 2018

Discrete-Time Adaptive Control Algorithms For Rejection Of Sinusoidal Disturbances, Mohammadreza Kamaldar

Theses and Dissertations--Mechanical Engineering

We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies.


Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback Jan 2018

Autonomous Uav Battery Swapping, Reed Jacobsen, Nikolai Ruhe, Nathan Dornback

Williams Honors College, Honors Research Projects

One of the main hindrances of unmanned aerial vehicle (UAV) technology are power constraints. One way to alleviate some power constraints would be for two UAVs to exchange batteries while both are in flight. Autonomous mid-air battery swapping will expand the scope of UAV technology by allowing for indefinite flight times and longer missions. A single board computer will control each UAV’s flight software to respond to inputs to align with each other mid-flight. When the two UAVs have joined, mechanical components will exchange a depleted battery on the worker UAV for a freshly charged battery that belongs to the …


Instrumentation And Inertial Navigation Systems Design For Tensegrity Robot Implementations, Scott Edward Harper Jan 2018

Instrumentation And Inertial Navigation Systems Design For Tensegrity Robot Implementations, Scott Edward Harper

Graduate Theses, Dissertations, and Problem Reports

One of the major challenges faced when developing missions for the exploration of planetary bodies is the risk these terrains pose on the science platform when using a traditional lander or wheeled rover. One means of developing platforms to traverse these harsh terrains is to utilize mobility systems comprised of tensegrity structures. These structures have the capacity to distribute loads across a network of axially loaded members such that they can be constructed in a very lightweight manner and morph their geometries when required. In literature, there has been significant progress in simulated environments to utilize tensegrity structures as mobility …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …