Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad Dec 2011

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad

Master's Theses

The paper describes the background and concepts behind a master’s thesis platform known as COMET (Constrained Optimization of Multiple-dimensions for Efficient Trajectories) created for mission designers to determine and evaluate suitable interplanetary trajectories. This includes an examination of the improvements to the global optimization algorithm, Differential Evolution, through a cascading search space pruning method and decomposition of optimization parameters. Results are compared to those produced by the European Space Agency’s Advanced Concept Team’s Multiple Gravity Assist Program. It was found that while discrepancies in the calculation of ΔV’s for flyby maneuvers exist between the two programs, COMET showed a noticeable …


Global Optimization Of Mga-Dsm Problems Using The Interplanetary Gravity Assist Trajectory Optimizer (Igato), Jason M. Bryan Dec 2011

Global Optimization Of Mga-Dsm Problems Using The Interplanetary Gravity Assist Trajectory Optimizer (Igato), Jason M. Bryan

Master's Theses

Interplanetary multiple gravity assist (MGA) trajectory optimization has long been a field of interest to space scientists and engineers. Gravity assist maneuvers alter a spacecraft's velocity vector and potentially allow spacecraft to achieve changes in velocity which would otherwise be unfeasible given our current technological limitations. Unfortunately, designing MGA trajectories is difficult and in order to find good solutions, deep space maneuvers (DSM) are often required which further increase the complexity of the problem. In addition, despite the active research in the field over the last 50 years, software for MGA trajectory optimization is scarce. A few good commercial, and …


Integration Of Aeroservoelastic Properties Into The Nasa Dryden F/A-18 Simulator Using Flight Data From The Active Aeroelastic Wing Program, Alexander Wong Chin Mar 2011

Integration Of Aeroservoelastic Properties Into The Nasa Dryden F/A-18 Simulator Using Flight Data From The Active Aeroelastic Wing Program, Alexander Wong Chin

Master's Theses

Aircraft structures have varying stiffness levels making them flexible. Consequently, this elastic property becomes increasingly important at high speeds affecting the flight dynamics of the aircraft. In high speed aircraft such as the F/A-18, elastic structural properties must be accounted for to ensure confidence in predicted flight dynamics in order to avoid adverse aeroelastic phenomena throughout flight.

Data from the F/A-18 Active Aeroelastic Wing (AAW) program was used to create aeroservoelastic (ASE) models at varying flight conditions. The discretized ASE models were integrated into the NASA Dryden F/A-18 simulator in parallel with the traditional 6-DOF (degrees-of-freedom) flight dynamics calculations to …