Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin Jan 2023

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal Aug 2021

Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal

Electronic Thesis and Dissertation Repository

Membranes made from atomically thin materials promise hundreds of times higher production rates than conventional polymer membranes for separation applications. Graphene is impermeable to gases but becomes selectively permeable once pores are introduced into it but creating trillions of nanopores over large areas is difficult. By instead choosing an inherently porous two-dimensional material with naturally identical pores repeated at high density, we may circumvent this challenge. In this work, we explore the potential of two candidate materials, 2D polyphenylene and graphdiyne. We synthesize cyclohexane-m-phenylene, a monomer of 2D polyphenylene. We then develop an atomic force microscopy technique for measuring the …


Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent Jan 2019

Developments Towards High-Flux Silica Nanosphere Substrates To Support Conforming Self-Assembled Gold Nanoparticle Monolayers For Applications In Size-Selective Filtration, Ryan Baker Vincent

Theses, Dissertations and Capstones

Hydrophobic thiol coated gold nanoparticles have recently been investigated for their ability to self-assemble into robust, ultra-thin, porous membranes at a liquid-vapor interface. Due to the well-ordered, hexagonal close-packed nanoparticle arrays formed during the self-assembly process, these 2-dimensional sheets have very well-defined pore structures and have been shown to span gaps of several microns under ideal conditions. While these self-assembled nanoparticle monolayers have very promising applications in the field of size-selective filtration due to their well-defined pore structure, they need to be supported by a rigid substrate with a large amount of open area. Here, tightly packed arrays of silica …