Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Growth Of Epitaxial Graphene On Single Crystal Copper Surfaces By Chemical Vapor Deposition, Tyler Rutley Mowll Jan 2018

Growth Of Epitaxial Graphene On Single Crystal Copper Surfaces By Chemical Vapor Deposition, Tyler Rutley Mowll

Legacy Theses & Dissertations (2009 - 2024)

Graphene is of significant interest due to its unique properties, such as high carrier mobility, mechanical strength, and thermal conductivity. Potential applications include next generation transistors, interconnects, biological and chemical sensing devices, and super capacitors. The research presented here addresses unresolved questions regarding the nucleation and growth of graphene by chemical vapor deposition (CVD) on the high index surfaces of copper single crystals. While much CVD graphene growth has been performed on copper foils, the polycrystalline nature of the foils renders large-scale single domain growth of graphene difficult. For this reason, many groups seek to reduce the nucleation rate of …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …