Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Spectrally-Selective All-Inorganic Scattering Luminophores For Solar Energy-Harvesting Clear Glass Windows, Ramzy Alghamedi, Mikhail Vasiliev, Mohammad Alam, Kamal Alameh Jul 2015

Spectrally-Selective All-Inorganic Scattering Luminophores For Solar Energy-Harvesting Clear Glass Windows, Ramzy Alghamedi, Mikhail Vasiliev, Mohammad Alam, Kamal Alameh

Mikhail Vasiliev

All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass …


Tunable Integrated-Optics Nanoscaled Devices Based On Magnetic Photonic Crystals, Mikhail Vasiliev, Vladimir I. Belotelov, Kamal Alameh, R Jeffery, V A. Kotov, A K. Zvezdin Apr 2015

Tunable Integrated-Optics Nanoscaled Devices Based On Magnetic Photonic Crystals, Mikhail Vasiliev, Vladimir I. Belotelov, Kamal Alameh, R Jeffery, V A. Kotov, A K. Zvezdin

Mikhail Vasiliev

Magnetooptical properties of magnetic photonic crystals have been investigated in the view of their possible applications for the modern integrated-optics devices. A "transfer matrices" formalism was expanded for the case of oblique light incidence on the periodic nanoscaled magnetic multilayered systems. Several new effects such as the Faraday effect dependence on the incidence angle and the tunability of the bandgap defect modes spectral location by external magnetic fields were found. Several possibilities of one-dimensional magnetic photonic crystals applications for the optical devices are discussed. Initial steps towards the practical implementation of the proposed devices are reported.


Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee Apr 2015

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee

Mikhail Vasiliev

In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices.


Modification Of Bi:Yig Film Properties By Substrate Surface Ion Pre-Treatment, A. Shaposhnikov, A. Prokopov, A. Karavainikov, V. Berzhansky, T. Mikhailova, V. Kotov, D. Balabanov, I. Sharay, O. Salyuk, Mikhail Vasiliev, V. Golub Apr 2015

Modification Of Bi:Yig Film Properties By Substrate Surface Ion Pre-Treatment, A. Shaposhnikov, A. Prokopov, A. Karavainikov, V. Berzhansky, T. Mikhailova, V. Kotov, D. Balabanov, I. Sharay, O. Salyuk, Mikhail Vasiliev, V. Golub

Mikhail Vasiliev

The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd3Ga5O12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi2.8Y0.2Fe5O12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar+ ion beams is a result of the substrate surface amorphization caused by the ion bombardment.


Magnetic Heterostructures With Low Coercivity For High-Performance Magneto-Optic Devices, V. Kotov, A. Popkov, S. Soloviev, Mikhail Vasiliev, Kamal Alameh, Mohammad Alam, D. Balabanov Apr 2015

Magnetic Heterostructures With Low Coercivity For High-Performance Magneto-Optic Devices, V. Kotov, A. Popkov, S. Soloviev, Mikhail Vasiliev, Kamal Alameh, Mohammad Alam, D. Balabanov

Mikhail Vasiliev

In this work, we analyse the method of forming magneto-optically active heterostructures based on magnetic layers with different magnetic properties. Layers of one type possess a high effective constant of uniaxial magnetic anisotropy for which the condition is fulfilled, where Ku is the constant of uniaxial magnetic anisotropy and is the demagnetizing energy, and layers of the second type used possess in-plane or quasi-in-plane magnetization, in which the condition holds true. The layers of the first type, which we refer to as layers of positive effective uniaxial magnetic anisotropy, may have the composition Bi2Dy1Fe4Ga1O12 and the layers of second type …


Tunable Integrated-Optics Nanoscaled Devices Based On Magnetic Photonic Crystals, Mikhail Vasiliev, Vladimir I. Belotelov, Kamal Alameh, R Jeffery, V A. Kotov, A K. Zvezdin Apr 2015

Tunable Integrated-Optics Nanoscaled Devices Based On Magnetic Photonic Crystals, Mikhail Vasiliev, Vladimir I. Belotelov, Kamal Alameh, R Jeffery, V A. Kotov, A K. Zvezdin

Mikhail Vasiliev

Magnetooptical properties of magnetic photonic crystals have been investigated in the view of their possible applications for the modern integrated-optics devices. A "transfer matrices" formalism was expanded for the case of oblique light incidence on the periodic nanoscaled magnetic multilayered systems. Several new effects such as the Faraday effect dependence on the incidence angle and the tunability of the bandgap defect modes spectral location by external magnetic fields were found. Several possibilities of one-dimensional magnetic photonic crystals applications for the optical devices are discussed. Initial steps towards the practical implementation of the proposed devices are reported.


Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee Apr 2015

Nanostructured Engineered Materials With High Magneto-Optic Performance For Integrated Photonics Applications, Mikhail Vasiliev, Kamal Alameh, Viatcheslav A. Kotov, Y T. Lee

Mikhail Vasiliev

In this paper, we experimentally investigate the performance of a set of technologies used for the deposition, annealing and characterization of high-performance magnetooptic rare-earth-doped garnet materials and all-garnet heterostructures for use in photonic crystals and novel integrated-optics devices.


Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh Apr 2015

Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh

Mikhail Vasiliev

The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.