Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta Dec 2018

Low Temperature Desiccants In Atmospheric Water Generation., Sunil Gupta

Electronic Theses and Dissertations

Surging global water demand as well as changes to weather patterns and over exploitation of natural water sources, such as ground water, has made potable water a critical resource in many parts of the World already – one rapidly heading towards a crisis situation. Desalination has been adopted as a solution – this is however energy intensive and impractical for most of the developing countries - those most in need of water. A renewable source of energy is solar thermal and solar photovoltaic. A plentiful source of water is the humidity in the atmosphere. This research is to push the …


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers at …


The Effectiveness Of Localized Ultrasound And Aptamer Surface Modification On Nanoemulsions For Drug Delivery To Spheroids., Daniel A. Hodge Jul 2018

The Effectiveness Of Localized Ultrasound And Aptamer Surface Modification On Nanoemulsions For Drug Delivery To Spheroids., Daniel A. Hodge

Electronic Theses and Dissertations

Cancer is a group of diseases that affects 1.6 million and kills nearly 600,000 Americans each year. The National Cancer Institute defines it as “diseases in which abnormal cells divide without control and can invade nearby tissues” and it is often treated with one or more of the following: chemotherapy, radiation, surgery. The expense for these treatments is expected to rise to $156 billion by 2020. Localized delivery can improve effectiveness and cancer survival rates, decrease the cost of treatment, and decrease the side effects of chemotherapy. This paper addresses models for this localized delivery through nanoemulsions. Nanoemulsions are a …


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation …


Interplay Of Molecular And Nanoscale Behaviors In Biological Soft Matter, Nicholas Ciaffone Jan 2018

Interplay Of Molecular And Nanoscale Behaviors In Biological Soft Matter, Nicholas Ciaffone

Electronic Theses and Dissertations

The complexity of biological soft matter at the sub-micrometer level is fundamentally correlated to the functionalities at the larger scale. Reflecting the level of heterogeneities in the properties of systems remains challenging when probing small scales, due to the mismatch between the area surveyed with the tools offering nanoscale resolution, such as atomic force microscopy (AFM), and the scale of natural variations inherent to biology. Hence, to understand the physiological and mechanical alterations that occur within a single cell relative to a cell population, a multiscale approach is necessary. In this work we show that it is possible to observe …


Tunable Effect Of Metal Ions On Polyelectrolyte Mechanics, Angie Diaz Jan 2018

Tunable Effect Of Metal Ions On Polyelectrolyte Mechanics, Angie Diaz

Electronic Theses and Dissertations

Polyelectrolyte based hydrogel fibers can mimic extracellular matrix and have applications such as drug delivery and tissue scaffolding. Metal ions play a critical role in hydrogel fiber stability via electrostatic interactions, but knowledge of how they modulate mechanical properties of individual polyelectrolyte polymers is lacking. In this study, electrospun polyacrylic acid with chitosan is used as a model system to evaluate ferric ion effect on nanofiber mechanics. Using dark field microscopy imaging and persistence length analysis, we demonstrate that ferric ions modulate the bending stiffness of nanofibers. Young's modulus of individual nanofibers is estimated at values of a few kilopascals, …


A Multisystem Approach For The Characterization Of Bacteria For Sustainable Agriculture, Briana Lee Jan 2018

A Multisystem Approach For The Characterization Of Bacteria For Sustainable Agriculture, Briana Lee

Electronic Theses and Dissertations

The chemical, physical, and biological properties of bacteria developing resistance have been explored in animal based bacteria while plant bacteria have been largely neglected. Thus, the ability to probe changes in stiffness, adhesion, binding interactions and molecular traits of bacteria causing plant diseases is of great interest to develop a new generation of more potent, yet sustainable, pesticides. Our study aims to investigate the physical and chemical properties of bacterial systems, in particular their cell walls. Building upon this fundamental understanding of the cells, we also investigate the physicochemical responses associated to multivalent nanoparticle-based bactericide treatments on bacterial systems identified …


Size, Charge And Dose Dependent In-Vitro Kinetics Of Polystyrene Nanoparticles, Yasmine Abdellatif Jan 2018

Size, Charge And Dose Dependent In-Vitro Kinetics Of Polystyrene Nanoparticles, Yasmine Abdellatif

Electronic Theses and Dissertations

The aim of the study described herein is to quantify the in-vitro kinetics of internalization of polystyrene nanoparticles (PS NPs) by cells. We used different charges, sizes and doses of fluorescently labelled PS NPs. Nanoparticles were characterized with UV-Vis, Fluorescence emission Dynamic Light Scattering (DLS) and Zeta potential for knowing their absorption, fluorescence spectra, size, charge, respectively. Additionally, cell viability was tested to know the toxicity of PS NPs. The quantitative uptake, the kinetics profile and rate of uptake were studied by using a new in-vitro fluorescence assay. This was achieved quantitatively and qualitatively by fluorescent plate reader and confocal …