Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanomedicine

The Summer Undergraduate Research Fellowship (SURF) Symposium

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson Aug 2016

Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson

The Summer Undergraduate Research Fellowship (SURF) Symposium

The development of novel and efficient mixing methods is important for optimizing the efficiency of many biological and chemical processes. Tuning the physical and performance properties of nucleic acid-based nanoparticles is one such example known to be strongly affected by mixing efficiency. The characteristics of DNA nanoparticles (such as size, polydispersity, ζ-potential, and gel shift) are important to ensure their therapeutic potency, and new methods to optimize these characteristics are of significant importance to achieve the highest efficacy. In the present study, a simple segmented flow microfluidics system has been developed to augment mixing of pDNA/bPEI nanoparticles. This DNA and …


Using Collagen Binding Poly(N-Isopropylacrylamide) Nanoparticles To Prevent Intravascular Platelet Adhesion And Activation, Anna E. Searle, Alyssa Panitch, James Mcmasters Aug 2014

Using Collagen Binding Poly(N-Isopropylacrylamide) Nanoparticles To Prevent Intravascular Platelet Adhesion And Activation, Anna E. Searle, Alyssa Panitch, James Mcmasters

The Summer Undergraduate Research Fellowship (SURF) Symposium

Balloon angioplasty, the most prevalent non-surgical treatment for Atherosclerosis, damages the endothelial layer of the artery, baring an underlying collagenous layer, which causes platelet adhesion and activation and eventual thrombosis and intimal hyperplasia. Previous work in our lab has used a collagen-binding peptidoglycan, dermatan-sulfate-SILY (DS-SILY), that has been shown to bind to type I collagen and prevent platelet adhesion and activation. Our goal is to fabricate nanoparticle-SILY by cross-linking SILY to a poly(N-isopropylacrylamide) (NIPAm) nanoparticle instead of a DS backbone, while retaining the SILY’s high collagen binding affinity and platelet inhibition capacity observed in DS-SILY. Using a biotin-streptavidin assay, we …